
Finite-State Machines

Foundations and Applications to Text Processing
and

Pattern Recognition

Wojciech Skut, Jakub Piskorski and Jan Daciuk

June 1, 2005

2

Authors:

Wojciech Skut (wojciech@google.com) Google Inc.
Jakub Piskorski (piskorsk@dfki.de) DFKI GmbH
Jan Daciuk (jandac@eti.pg.gda.pl) Gdańsk University of Technology

Contents

1 Finite-State Automata 5
1.1 Alphabets and Strings . 5
1.2 State Diagrams and State Machines . 6
1.3 Non-Deterministic Automata . 11
1.4 Determinization . 15
1.5 ε-Transitions . 19

1.5.1 ε-Elimination . 22
1.5.2 Subset Construction with ε-Transitions . 26

1.6 Equivalence of Automata . 27
1.7 Minimization . 30

1.7.1 A Dynamic Programming Solution . 33
1.7.2 Brzozowski’s Algorithm . 47
1.7.3 Comparison of Minimization Algorithms . 48

1.8 Further Reading . 48

2 Regular Expressions 49
2.1 Regular Expressions and Finite-State Automata 49
2.2 Syntax of Regular Expressions . 50

2.2.1 Extensions . 52
2.3 Compilation of Regular Expressions into FSAs . 52

2.3.1 Atomic Regular Expressions . 52
2.3.2 Complex Regular Expressions . 53

2.4 Regular Languages . 54
2.4.1 Complement . 56
2.4.2 Intersection . 58
2.4.3 Difference . 59
2.4.4 Reversal . 59

2.5 Further Reading . 60

3 Applications of Finite-State Automata 61
3.1 Tokenization . 61

3.1.1 Finer Token Classes . 62
3.1.2 Regexp-Based Tokenization . 65

3.2 Pattern Matching . 69
3.2.1 Finding Patterns in Time O(|w|) . 69
3.2.2 Failure Function . 70

3.3 Dictionaries . 79
3.3.1 Dictionary Tries . 79
3.3.2 Dictionary Automata . 82
3.3.3 Constructing Minimal Dictionaries . 82
3.3.4 FSA as an Associative Container . 89

3.4 Further Reading . 90

3

4 CONTENTS

4 Implementing Automata 91
4.1 Data Structures for Representing Automata . 91

4.1.1 Transition Matrix . 92
4.1.2 Transition Lists . 93
4.1.3 Compressed Transition Matrix . 94

4.2 Finite-State Toolkits . 96
4.3 Further Reading . 96

Preface

Following decades of intense research, finite-state machines have established themselves as a for-
mal framework for dealing with a broad range of linguistic phenomena as well as text and speech
processing tasks. To name only a few: tokenization, morphology and lexica are very often imple-
mented as finite-state transducers. Regular expressions, familiar from Perl and Unix commands
such as grep or sed and equivalent to finite automata, are a convenient pattern matching tool.
Finite-state machines have also been applied to parsing, spelling correction and many other tasks.

Being one of the most thoroughly investigated areas of automata theory, finite-state machines
are handled in depth in many brilliant computer science textbooks. So the question arises: why
write yet another book on this topic? The answer lies in the specifics of the application. Natural
Language Processing (NLP) and Speech Processing often require a perspective different from that
of compiler design or Unix tools.

Still, there exist a number of excellent books and tutorials addressing the NLP applications
of finite-state machines. However, most of them are closely tied to a specific formalism, such as
the XFST toolkit (Karttunen and Beesley 2003) or the INTEX system (Silberztein 1999a). A
very good synopsis of finite-state algorithms is provided by Roche and Schabes (1997), but it is
limited to the 65 pages of the introductory section. As a result, the relevant knowledge is spread
across a vast spectrum of textbooks, journal articles and conference papers: often excellent, but
using different notational conventions and requiring different levels of mathematical or computer
science background from the reader. All this makes us conclude that there is a need for a textbook
explaining the basic finite-state concepts from an NLP-oriented point of view.

The primary aim of this book is to convey the basic intuitions behind finite-state machines and
show the readers a number of generic use cases for finite-state methods. Starting from a simple
pattern recognition task at the beginning of chapter 1, we introduce different variants of finite-state
machines and algorithms for manipulating them. Chapter 2 introduces regular expressions as a
convenient formal notation equivalent to finite-state machines. A number of generic formalization
techniques are explained in chapter 3. Finally, chapter 4 discusses implementation issues.

We have attempted to keep the mathematical side of this book as simple as possible. Everyone
with an undergraduate-level knowledge of set theory and function notation should be able to
understand the mathematical underpinning of the concepts and algorithms presented in our book.
No previous knowledge of automata theory is required, although some acquaintance with it will
certainly be helpful, as will familiarity with basic NLP and Unix/Perl regular expressions.

Of course, it is difficult to cover all finite-state NLP applications in a single book. Conscious of
this restriction, we have decided to limit the scope of the present edition, published as a reader for
a course at the 2005 European Summer School on Logic, Language and Information (ESSLLI), to
finite-state automata and their applications, thus leaving out such important concepts as weighted
automata and transducers. We envisage extending our book to these topics at a later time.

This book could not have been possible without the support of several people and institutions.
We would like to thank Matthew Aylett and Paul Taylor for their valuable comments. Also,
we acknowledge the support we received from Rhetorical Systems Ltd in Edinburgh, the German
Research Centre for Artificial Intelligence in Saarbrücken and the Gdańsk University of Technology.
The organizing committee of the ESSLLI held in August 2005 at the Heriot-Watt University in
Edinburgh provided for a publication of our book as a course reader. Special thanks go to Sue
Fitt, who kindly agreed to do the proof-reading. All remaining mistakes are, of course, ours.

Chapter 1

Finite-State Automata

This chapter introduces notions that provide the basis for the remaining chapters of our book.
After a brief explanation of the basic concepts of formal language theory in section 1.1, a pattern-
matching application in section 1.2 serves as an example of how to build a finite-state automaton.
Section 1.3 differentiates between deterministic and non-deterministic automata in terms of data
structures and computational properties. The remaining sections explain the most common oper-
ations on automata: how to turn a non-deterministic into a deterministic one (section 1.4); how
to extend an automaton with ε-transitions (section 1.5); how to determine the equivalence of two
different automata (section 1.6). In section 1.7, we show how to minimize an automaton and list
four different minimization algorithms.

1.1 Alphabets and Strings

This book deals with machines that process texts. Texts are composed of words, and words consist
of characters. The characters are picked from an alphabet: in an English text, we will typically
find the lower-case ASCII letters a . . . z, the upper-case ASCII letters A . . . Z, digits, punctuation
marks and some special symbols (%, $, &, etc.). In a German or Swedish text, we are also very
likely to find diacritics in letters such as ä, ö or ü. A Japanese text may contain Kanji, Katakana
and Hiragana characters, but also Latin letters. In general, any finite collection of symbols can be
called an alphabet. By convention, the symbol Σ will be used to denote such collections.

Sequences of symbols from an alphabet are called strings. Thus, a, ab, abbbac and gggaz are
all strings over the ASCII alphabet. The length of a string w, denoted |w|, is the number of
characters in w. So, |a| = 1, |ab| = 2 and |abbbac| = 6.

The empty sequence of characters is a special case, called the empty string and written ε.
Obviously, |ε| = 0.

The set of all strings over an alphabet Σ is denoted Σ∗. Any set of strings is called a language
(over Σ). Thus, the following sets are called languages over the alphabet {a, b}:

• {a, b, aa} is a finite language consisting of three strings;

• {a, aa, aaa, . . .} is an infinite language that consists of all non-empty sequences of a’s;

• Σ∗ — the set of all strings over Σ is obviously a language, too;

• ∅ is the empty language, which should not be confused with. . .

• . . . {ε}, i.e. the language that contains only one word: the empty string.

A number of operations are defined on strings. First, there is concatenation, written u · v, or
just uv. If u = a1 . . . am and v = b1 . . . bn, then uv = a1 . . . amb1 . . . bn. So, xxy · zz = xxyzz. Of
course, uε = εu = u for any u ∈ Σ∗.

5

6 CHAPTER 1. FINITE-STATE AUTOMATA

If u = a1 . . . am and v = a1 . . . am . . . am+k, then we say that u is a prefix of v, written u <p v.
Similarly, if u = ak . . . am and v = a1 . . . am, then u is a suffix of v.

A string u can be reversed, which we denote u−1: a1 . . . am −→ am . . . a1. For example,
(aabac)−1 = cabaa.

1.2 State Diagrams and State Machines

Many text processing applications pre-classify strings into different categories before doing the
actual — often category-specific — processing, as in the following examples.

Numbers: The front end of a speech synthesizer needs to distinguish telephone numbers from cur-
rency amounts as the two types of expressions are treated differently: 100765 is pronounced
one-oh-oh-seven-six-five if it is identified as a phone number, and one hundred thousand
seven hundred and sixty-five if it is part of a currency amount.

Names: A spell checker may distinguish proper names from common words as the former often
do not obey the rules of orthography.

URLs and e-mail addresses: Text processors often spot e-mail addresses and URLs in plain
text in order to highlight them graphically.

Such classification tasks do not normally present a difficulty to humans as the string categories
involved are clearly recognizable by certain distinctive features. For instance, a currency amount
is typically preceded by a currency symbol such as $. A proper name is usually a sequence of
capitalized words, sometimes preceded by a title such as Ms, Mr, Dr, or Prof. The challenge is to
make a machine recognize such properties of a string.

As a concrete example, suppose we want to build a device that checks if a given string is a valid
e-mail address. We can assume that the format of an e-mail address, e.g. w.skut@google.com,
is a user name (w.skut), followed by @, followed by a host name (google.com). Both the user
name and the host are composed of non-empty sequences of ASCII word characters (a-z and A-Z,
decimal digits, underscores, hyphens). The sequences are separated by dots.

The device should scan the input from left to right, one character at a time, and say “yes”
or “no” when it has finished reading. The task itself is quite simple and can be accomplished
according to the diagram shown in figure 1.1.

start name sep host
word character @ word character

word characterword character

..

Figure 1.1: A state machine recognizing e-mail addresses.

The circles in the diagram labeled with the symbols start, name, sep, host are called states.
They are connected by arcs labeled with alphabet symbols. The device is initially in the state
labeled start. Each time it scans a symbol, it follows the arc labeled with the symbol. Unless
the arc is a loop, the state of the machine changes.

1.2. STATE DIAGRAMS AND STATE MACHINES 7

If the machine encounters a symbol for which no arc exists in the current state, it cannot go
any further and we say that the input string has been rejected. For example, peter@paul@gmail
is rejected when the machine arrives at the second @.

Likewise, the machine should reject “incomplete” inputs such as peter or sue@, which are
prefixes of valid e-mail addresses. In such cases, the machine ends up in one of the states start,
name or sep. The reader may check that, whatever way we enter such a state, the string consumed
up to this point is not a legal e-mail address. We call such states rejecting because strings that
lead to such states are rejected.

On the other hand, if the machine ends up in the state host, we can be sure that the string
read in is a valid e-mail address. Such states are called accepting or final. If an input string leads
to a final state, we say that the machine accepts the string. We adopt the convention of marking
final states with double circles. Initial states are marked by short incoming arrows (→).

The formal construct shown in the diagram is called a state machine. The following few points
characterize this concept.

States: The state of the machine summarizes the information about the part of the string scanned
so far. For instance, name means that the string read so far is a potential user name: if we
see an @, we can proceed to reading the host name. In other words, the concept of a state
offers a very simple notion of memory.

Alphabet: The machine reads symbols from an alphabet. In the case of the above machine, the
input alphabet consists of the characters {a, . . . z, A, . . . Z, 1, . . . 9,%, ,@,−, .}.

Transitions: The arcs are a graphical representation of transitions. A transition captures the
notion of a machine jumping from a source state to a target state on reading an input symbol.

Determinism: The machine showed in the above diagram is deterministic, i.e. whatever state it
is in and whatever symbol it reads, there is at most one arc the machine can follow.

Accordingly, the transitions can be represented by means of a transition function δ such
that δ(qsource, a) = qtarget whenever there exists a transition leading from state qsource to
state qtarget and consuming symbol a. For example, the arcs in the state diagram shown in
figure 1.1 are expressed by the following values of δ:

δ(start, a) = name

δ(name,@) = sep

. . .

Function δ maps pairs 〈q, a〉 of states and symbols to states, which is written formally as
δ : Q × Σ → Q. Of course, if there is no transition leaving q and labeled a, δ(q, a) is not
defined. In other words, δ is a partial function (see also page 8).

In this book, we focus on one particular type of state machines, namely those having a finite
number of states. Accordingly, they are called finite-state machines (FSM). The e-mail address
recognizer shown in figure 1.1 clearly belongs to this type. More precisely, it is a deterministic
finite-state automaton (deterministic FSA, DFSA), which is defined as follows:

Definition 1 A deterministic finite-state automaton is a quintuple A = (Σ, Q, q0, F, δ) such that

Σ is a finite alphabet

Q is a finite set of states (the stateset of A)

q0 ∈ Q is the initial state of A

F ⊂ Q are the final (accepting) states of A (we allow more than one final state)

δ : Q× Σ→ Q is the transition function of A.

8 CHAPTER 1. FINITE-STATE AUTOMATA

Complete and Incomplete Automata

In this book, we mostly consider partial transition functions δ : Q × Σ → Q, so that δ(q, s)
may be undefined for certain values of q ∈ Q and s ∈ Σ. Graphically, this corresponds to
there being no arc labeled s leaving q, as in the automaton below, where δ(q0, c), δ(q1, a) and
δ(q1, b) are not defined. Such automata are called incomplete.

q0 q1
a

b
c

An incomplete automaton can be transformed into an equivalent complete one, i.e. one with
a total transition function, defined for each pair 〈q, s〉. Whenever δ(q, s) is undefined in the
original (incomplete) automaton, we introduce a new transition labeled s and going from q
to a new dead state (qdead), as shown in the figure below.

q0 q1 qdead
a a,b

b a,b,c

c

c

The new transition function δtotal(q, s) is thus defined to be equal to qdead for all q and s such
that δ(q, s) is undefined. This includes the case δ(qdead , s) = qdead for each symbol s ∈ Σ.
Informally, we may say that the complete automaton jumps to the dead state whenever the
incomplete one would just fail to read the next input symbol. Since δ(qdead , s) = qdead for
all s ∈ Σ, the automaton then stays in the dead state until the whole input is consumed. As
qdead is a non-final state, the input is thus rejected.
A disadvantage of complete automata is their size: they are larger than equivalent incomplete
automata since one has to explicitly represent the dead state and all the transitions that are
undefined in an incomplete automaton. In this book, all automata should be assumed to be
incomplete unless indicated otherwise.

For example, the machine in figure 1.1 can be viewed as a DFSA A = (Σ, Q, q0, F, δ) such that: Σ
is the 7-bit ASCII character set; Q = {start, name, sep, host}; q0 = start is the initial state of
A and F = {host}. The transition function is defined as follows:

δ(start, a) = name if a is a word character, otherwise undefined

δ(name, a) =

name if a is a word character
start if a = .
sep if a = @
undefined otherwise

δ(sep, a) = host if a is a word character, otherwise undefined

δ(host, a) =

 host if a is a word character
sep if a = .
undefined otherwise

1.2. STATE DIAGRAMS AND STATE MACHINES 9

Extended Transition Function

The transition function δ(q, a) tells us to what state the machine jumps from state q when it
consumes a single alphabet symbol a. Sometimes it is convenient to check what state is reached
when starting in q and reading a string, so we could write δ(start, address@domain) = host.
For this, we define an extension of δ to the domain Q× Σ∗:1

δ(q, ε) = q

δ(q, ua) =
{

δ(δ(q, u), a) if u ∈ Σ∗ and both δ(q, u), δ(δ(q, u), a) are defined
undefined otherwise

This extension allows us to formalize the notion of a DFSA consuming and accepting a string.

Definition 2 We say that a DFSA consumes a string w when δ(q0, w) is defined. If, in addition,
δ(q0, w) ∈ F , we say that the automaton accepts w.

The above definition makes it easy to capture another concept: the language of an automaton.

Definition 3 Let A be an FSA. The set {w ∈ Σ∗ : A accepts w} of strings accepted by A is called
the language of A and denoted L(A).

The above definition can be generalized to any type of formal machine M as long as the notion of
M accepting a string can be defined sensibly. Accordingly, the set of all strings accepted by M is
then is called its language and written L(M).

Determinism

Determinism is a useful property of automata. Regardless of the current state of the automaton
and the next symbol to be scanned, there is always at most one transition that can be taken while
reading the symbol (if there is none, we already know that the current input has been rejected).
If the automaton has consumed the whole input string ending up in a final state, the string has
been accepted.

The acceptance or rejection of any string w can be done in at most |w| steps — one step for
each character, no backtracking, as shown in algorithm 1.2.1.

Algorithm 1.2.1: Accept(A = (Σ, Q, q0, F, δ), w)

q ← q0

for i← 1 to |w|
if δ(q, w[i]) not defined
return (false)

else q ← δ(q, w[i])
if q ∈ F
return (true)

else return (false)

The algorithm takes a DFSA A = (Σ, Q, q0, F, δ) and a string w ∈ Σ∗, and checks whether or
not w ∈ L(A). The current state of the automaton (q) is initially set to q0, and then updated
to whatever state the transition function points. The main loop (for i = 1 to |w|) executes at
most |w| times, each time looking up the value of δ(q, w[i]), where i is the i-th character of w.
If δ(q, w[i]) is not defined, the algorithm immediately returns False. If this does not happen, the
loop terminates and the variable q holds the value of δ(q0, w), which is then looked up in the set
F of final states.

1The extension of δ to the domain Q×Σ∗ is sometimes denoted δ∗ in order to be distingushed from the function
δ itself. In order to keep notation as simple as possible, we do not follow this convention in this book. Note that
δ∗(q, a) = δ(q, a) for all a ∈ Σ, so there is no danger of inconsistency.

10 CHAPTER 1. FINITE-STATE AUTOMATA

From a user’s prespective, it is very important to know how fast the algorithm is, especially
when w is very long. FSAs are often applied to texts in an order of magnitude of gigabytes, so we
are primarily interested in seeing how the execution time depends on the length of w.

The total execution time for a string w can be written as a sum of three terms:

tq←q0 is the time needed for the assignment q ← q0;

tδ(q,a) · |w| is the time needed for looking up a single transition (tδ(q,a)) multiplied by the number
of such lookups (|w|);

tq∈F is the time needed for checking if state q is final.

Obviously, the values tq←q0 , tδ(q,a) and tq∈F are independent of w — they only depend on the size
and implementation of the automaton. Thus, it is only the second term (tδ(q,a) · |w|) that grows
when w gets longer. The growth of this term is proportional to |w|, and the total running time of
the algorithm can be expressed as a linear function of |w|: ttotal(w) = α · |w|+ β, where α and β
are constants independent of w (in our example, α = tδ(q,a) and β = tq←q0 + tq∈F). We say that
the running time of the algorithm is linear in the length of w.

For text and speech processing, linear complexity is highly desirable. In the age of the World-
Wide Web, we often deal with text collections whose size is measured in gigabytes (1 Gb =
109 bytes = 1, 000, 000, 000 bytes) or terabytes (1 Tb = 1012 bytes = 1, 000, 000, 000, 000 bytes).
The processing of one byte with a deterministic automaton usually requires very little time, in
the order of magnitude of nanoseconds (1ns = 10−9s = 1

1,000,000,000s) or at most microseconds
(1µs = 10−6s = 1

1,000,000s). As a result, a linear finite-state algorithm may take a fraction of a
second to process a megabyte (1, 000, 000 bytes) of text, a few minutes for a gigabyte, and a day
or two for a terabyte. On the other hand, a quadratic (O(|w|2)) algorithm would take days for
one megabyte, years for a gigabyte, and millennia for a terabyte of text!

Function Growth and the O-Notation

The value of the constants α and β in a linear function f(n) = α · n + β may vary: f(n) =
n+1000 is larger for small n than g(n) = 100 ·n+1, but g grows much faster than f , so that
g(n) > f(n) for n ≥ 11. What both functions have in common is that for n large enough,
their value for 2n is approximately twice their value for n. On the other hand, the function
h(n) = 2n does not share this characteristic: already h(n + 1) is twice the value of h(n).
Intuitively, h belongs to a different “growth class” than f and g.

The “growth class” of a function f(n) is called its asymptotic complexity and written
O(f(n)). It is determined by taking the fastest-growing component of f and ignoring all
constant coefficients, which leaves a combination of the functions np, pn and log n. More
formally, the asymptotic complexity of a function f(n) is a function t(n) that forms an
upper bound for f(n) for large n, i.e., f(n) ≤ t(n) for all n ≥ n0 for some n0 ≥ 0. The
complexity class is denoted using the so called O-notation, i.e., O(t(n)) stands for the set
of all functions that grow no faster than t(n), disregarding constant factors. For example
O(n + 1000) = O(1000 · n + 1) = O(n). Therefore, we say that the asymptotic complexity of
both f and g is O(n), while that of h is 2n.

The most commonly occurring complexity classes are:

Constant O(1): functions independent of the size of the input;

Logarithmic O(log n): very slow growth: log210 ≈ 3.32, log2100 ≈ 6.64, log21000 ≈ 9.97

Linear O(n): growth proportional to the size of input;

Log-linear O(n · log n): slower than linear, but better than quadratic (O(n2));

Polynomial O(np): for some constant p, includes linear and quadratic;

Exponential O(pn): very fast growth; intractable for large values of n.

1.3. NON-DETERMINISTIC AUTOMATA 11

1.3 Non-Deterministic Automata

Constructing deterministic automata is only easy in the case of very simple structures. Complex
ones are much more difficult to design — unless we drop the determinism requirement. For
example, consider a machine that recognizes telephone numbers. Such a machine should be able
to handle different input formats such as plain local numbers (e.g. 677-54-02-12), numbers
preceded by national area codes (0131-667-00-011) and international country codes (0044-131-
667-00-011, +44131-667-00-011).

The basic pattern of such numbers is: an optional international and/or local area code starting
with +, 0 or 00, and followed by the local number composed of a sequence of digits and dashes.
We assume that the local part of the phone number does not begin with a zero.

The automaton for the local telephone numbers, shown in figure 1.2, is very simple. The arc
labels [0-9] and [1-9] stand for transitions labeled with each of the symbols within the respective
range.

q0 q1

q2

[1-9]

–

[0-9]

[0-9]

Figure 1.2: FSA recognizing local phone numbers.

The most straightforward way of extending this FSA to national and international dialing
codes would be to create a new state diagram by adding an extra initial state q3, from which the
start state of the original FSA could be reached via one of the possible prefixes +, 0, and 00, as
shown in figure 1.3. The original start state q0 should remain an initial state since we want the
extended FSA to accept local telephone numbers without a prefix — just as any telephone does.2

The arcs of the new state diagram express the intended functionality. However, the machine
does not fit the definition of a DFSA. There are two reasons for this non-compliance. Firstly, it has
two initial states (q0 and q3). Secondly, there are two arcs labeled 0 leaving state q3. Accordingly,
we need to modify the original DFSA definition so that it provides for a) multiple initial states,
and b) transition functions that return sets of states.

Formally, such a device is called a non-deterministic finite-state automaton, and is defined as
follows.

Definition 4 An (ε-free) non-deterministic finite-state automaton (NFSA) is a quintuple A =
(Σ, Q, I, F,∆) such that

• Σ is a finite alphabet

• Q is a finite set of states

2Note that the actual national/international codes (following the prefixes +, 0, and 00) are handled in the original
part of the automaton connecting the states q0, q1 and q2. This simplification is discussed again in section 1.5.

12 CHAPTER 1. FINITE-STATE AUTOMATA

q0 q1

q2q3 q4

[1-9]

–

0

+ 0

0

[0-9]

[0-9]0

Figure 1.3: NFSA for local and non-local phone numbers.

• I ⊂ Q is the set of initial states of A

• F ⊂ Q are the final (accepting) states of A

• ∆ : Q× Σ→ 2Q is the (set-valued) transition function.

As in a DFSA, the transition function takes a state q and an alphabet symbol a, but now it returns
not a single target state, but a set of states that can be reached from q via a transition labeled a.3

For the automaton shown in figure 1.3, ∆ takes the following values:

∆(q0, a) =
{
{q1} if a ∈ {1, . . . 9}
undefined otherwise

∆(q1, a) =

 {q1} if a ∈ {0, . . . 9}
{q2} if a = −
undefined otherwise

∆(q2, a) =
{
{q1} if a ∈ {0, . . . 9}
undefined otherwise

∆(q3, a) =

 {q0, q4} if a = 0
{q0} if a = +
undefined otherwise

∆(q4, a) =
{
{q0} if a = 0
undefined otherwise

The notions of A consuming and accepting a string need to be adapted to the definition of an
NFSA. Informally, A accepts a string w = a1 . . . at if we can get from an initial state to a final
state by following transitions labeled with the symbols a1 . . . at. The consecutive transitions form
a path in A, as stated in the following definition.

Definition 5 Let A = (Σ, Q, I, F,∆) be an NFSA. Let w ∈ Σ∗, w = a1 . . . at be a string. We say
that a sequence q0 . . . qt of states is a path for w if qi ∈ ∆(qi−1, ai) for i = 1 . . . t.

3 Sometimes, it is advantageous to view ∆ as a relation over Q×Σ×Q, i.e. a set of triples 〈qsource , a, qtarget 〉 such
that qsource , qtarget ∈ Q and a ∈ Σ. The notation 〈qsource , a, qtarget 〉 ∈ ∆ is then equivalent to qtarget ∈ ∆(qsource , a).

1.3. NON-DETERMINISTIC AUTOMATA 13

Obviously, A consumes a string w if there exists a path q0, . . . , q|w| for w such that q0 ∈ I. A
accepts w if there exists a path q0, . . . , q|w| for w such that q0 ∈ I and q|w| ∈ F .

It is clear from the definitions that a string may be consumed and/or accepted by an NFSA
via more than one path q0 . . . q|w|. As a result, checking the membership of a string in L(A) is not
as easy as for a DFSA.

A possible — although näıve — solution would be to explore one of the possible paths and
backtrack if any of the choices turns out to be a failure. For example, if 0131-55-607 is fed to the
automaton in figure 1.3, the first choice point is the selection of one of the initial states. If q0 is
chosen, we immediately discover that there are no transitions labeled with the first character of
the input string, namely the digit 0, leaving this state. As a result, the other initial state (q3)
must be explored.

From there, the first digit of the input string may lead either to state q0 or to state q4. If we
go for q4, we discover a dead-end again: the next character (1) cannot be accepted in this state.
In such a case, the device has to backtrack to the previous choice point and explore the other
possibility, i.e. following the transition from q3 to q0.

This time, we are lucky because the part of the automaton starting at state q0 is deterministic
and the remainder of the string eventually leads to the final state q1. In general, however, this
search technique might be very inefficient. Consider the NFSA shown in figure 1.4.

c

a

a

q1

q2

q3

q4

q5

q6

a b

a

a

Figure 1.4: An NFSA.

The automaton accepts three classes of strings:

• an odd number of a’s followed by a b (along the path q1, q3, q1, q3, . . . , q3, q5)

• an even number of a’s followed by a c (along the path q2, q4, q2, . . . , q2, q6)

• an even number of a’s, no less than 2 (along the path q2, q4, q2, . . . , q4, q5).

Now accepting or rejecting a string of the form a . . . ac may be expensive. If we choose to start
in q1, the automaton will read in the whole sequence of a’s alternating between the states q1 and
q3 only to discover that the last symbol cannot be accepted. Then, we need to backtrack to the
beginning, and try the other path, possibly choosing the wrong transition 〈q4, a, q5〉 for each a
while in state q4.

A better strategy is to keep the set of all states that can be reached in A via the already
consumed prefix u of the input string. Suppose we run the NFSA from figure 1.4 on the string
aaab. For the empty prefix (u = ε), the set of reachable states is obviously identical to I. For the
first character (u = a), we form a new set by taking all states that can be reached from any q ∈ I
by consuming a. We write ∆(I, a) to denote this set. Figure 1.5 shows the values of ∆(I, u) for
all prefixes u of aaab.

14 CHAPTER 1. FINITE-STATE AUTOMATA

I

∆(I, a)

∆(I, aa)

∆(I, aaa)

∆(I, aaab)

q1

q2

q3

q4

a
a

q1

q2

q5

a a a

q3

q4

a a

q5

b

Figure 1.5: The sets ∆(I, u) of states reachable by the consecutive prefixes u of the string aaab.

After consuming the string aaab, we end up in the set ∆(I, aaab) = {q5}. Since q5 ∈ F , it
means that there exists a successful path for aaab from I to F in A, hence aaab ∈ L(A).

Note that the expression ∆(I, a) is actually an abuse of notation since the first argument of
∆, according to definition 4, is a single state rather than a set of states. Therefore, ∆ needs to be
formally extended to the domain 2Q × Σ:4

∆(R, a) =
⋃
q∈R

∆(q, a) (1.1)

Figure 1.6 illustrates this construction idea. In order for expressions such as ∆(I, aaa) to be well-
defined, we must extend the type of the second argument of ∆ from single alphabet symbols to
strings u ∈ Σ∗:

∆(R, u) =
{

R : u = ε
∆(∆(R, v), a) : u = va, v ∈ Σ∗, a ∈ Σ (1.2)

Informally, ∆(R, u) tells us what states can be reached via string u starting in one of the states
in the set R ⊂ Q.

This allows us to formalize the notions of an NFSA A consuming or accepting a string in a
way similar to the respective definitions for DFSAs.

4If A is a set, then the symbol 2A denotes the powerset of A, i.e. the set of all subsets of A, including the empty
set ∅ and A itself. For example, if A = {1, 2}, then 2A = {∅, {1}, {2}, {1, 2}}.

1.4. DETERMINIZATION 15

R ∆(R, a)b

b
c a

a

a

Figure 1.6: Construction of ∆(R, a) out of a set of states R. ∆(R) is the set of all states reachable from
R via symbol a.

Definition 6 We say that an NFSA consumes a string w when ∆(I, w) 6= ∅. If, in addition,
∆(I, w) ∩ F 6= ∅, we say that the automaton accepts w.

Going back to the search strategy outlined above, it can now be stated that the membership
of w in L(A) can be determined in |w| steps by recursively constructing ∆(I, a1 . . . ak), k = 0, 1 . . .
according to formula (1.2), and then checking if ∆(I, w) ∩ F 6= ∅.

Obviously, this procedure terminates after at most |w| steps, which is an improvement over the
näıve backtracking. However, the sets ∆(I, a1 . . . ak) may grow large, ∆(I, a1 . . . ak) = Q in the
worst case. Also, there might be as many as |Q|2 · |Σ| transitions leaving such a set. The running
time of the algorithm is therefore bounded by O(|w| · |Q|2 · |Σ|). Furthermore, maintaining a set
data structure for ∆(I, a1 . . . ak) may also cause some processing overhead. Fortunately, a better
solution exists.

1.4 Determinization

Pursuing the idea underlying the construction of the sets ∆(I, u) a little further, we can arrive at
a method of transforming an NFSA into an equivalent DFSA, i.e. a DFSA that accepts exactly
the same strings as the original NFSA. The construction of such an equivalent DFSA for an NFSA
is called determinization.

The trick is to compute the sets ∆(I, u) off-line and make them states of a DFSA. In this
way, each state in the stateset Q̂ of the new DFSA Â = (Σ, Q̂, q̂0, F̂ , δ) is a subset of the original
stateset Q.5 The underlying intuition about these subsets is: if the deterministic automaton has
reached a state R by consuming a string w, this means that each r ∈ R can be reached in the
original NFSA A by starting in an initial state and consuming w. This intuition allows us to define
the components of Â as follows.

The initial state. With w = ε, we immediately conjecture that q̂0 = I.

The transition function. For any R ∈ 2Q, the set of states reached from R via a symbol a ∈ Σ
can be determined using the recursive formula (1.2). Thus, if we treat subsets of Q as
states of a DFSA, the extension of ∆ to 2Q×Σ becomes the desired deterministic transition
function δ:

δ(R, a) = ∆(R, a)

5The determinization method that we are describing is called subset construction or powerset construction for
this reason.

16 CHAPTER 1. FINITE-STATE AUTOMATA

This formula yields δ(R, a) = ∅ if no transitions labeled a leave any of the states in R. We
interpret this situation as equivalent to δ(R, a) undefined.

The final states. For a string w to be accepted by A, we must require at least one r ∈ R to be
final, R being the state reached after consuming w. Therefore, the set F̂ of final states of Â
is defined as

F̂ = {R ∈ Q̂ : R ∩ F 6= ∅}

The only issue left open is the exact form of Q̂, about which it has only been said that it is a
subset of 2Q. Obviously, we can set Q̂ = 2Q, and the construction will be correct. However, the size
of the DFSA will grow exponentially with the size of the input NFSA, making the determinization
of larger automata unfeasible. For example, the determinization of an NFSA with just 33 states
would lead to a DFSA with 233 states, which already exceeds the range of integers in most C and
C++ compilers. Furthermore, many states in such a fully expanded DFSA may be completely
useless. To illustrate this, let us consider the NFSA shown in figure 1.7.

q0 q1

q2

a

a,b b

b

a

Figure 1.7: An NFSA.

The full powerset expansion of this NFSA yields the structure shown in figure 1.8. The au-
tomaton has 2|Q|− 1 = 7 states.6 The reader may check that it indeed accepts the same language
as the original NFSA. However, it is also easy to see that some of the states are never used. For
example, there is no transition entering state {q0, q1}, which means that this state can never be
reached from the initial state q̂0 = {q0}.

As a matter of fact, only the states {q0}, {q2} and {q1, q2} can be traversed by a string in Σ∗.
Therefore, full powerset expansion of the stateset is not necessarily required in determinization,
thus making the construction feasible also for large NFSAs. The algorithm that we present in
the remainder of this section takes advantage of this observation and typically constructs only a
proper subset of the powerset of Q.

The key observation is that, out of all subsets R of Q, the only ones that matter in the
construction are the ones that can be reached by a string w ∈ Σ∗ starting in state q̂0 = I.
Therefore, we can construct the DFSA by gradually expanding Q̂ and δ in the following way.

The first step is to create the initial state q̂0. By definition, q̂0 = I = {q0}.

{q0}

6As explained above, the empty set is ignored.

1.4. DETERMINIZATION 17

{q0} {q1} {q2}

{q0, q1} {q1, q2} {q0, q2}

{q0, q1, q2}

a b a

a,b
a

b

a,b

b

a

b

Figure 1.8: Determinization result.

After constructing the initial state q̂0, we construct all states that can be reached from q̂0 by
consuming a single symbol s. For s = a, the construction method yields δ(q̂0, a) = {q1, q2}
because both q1 and q2 can be reached from q0 via a. For s = b, we obtain δ(q̂0, b) = {q2} because
there is only one transition leaving q0 and labeled b. The intermediate result (the part of the
DFSA constructed so far) is shown in the figure below. Note that the new states {q2} and {q1, q2}
are final because F ∩ {q2} = F ∩ {q1, q2} = {q2} 6= ∅.

{q0} {q2}{q1, q2}
a

b

The above step is the basic building block of the subset construction algorithm. We consider a
DFSA state R ⊂ Q and, for each s ∈ Σ, construct δ(R, s) as the union of all states reachable from
R via s. This operation can be called the expansion of state R.

In our example, the next states to be expanded are those created in the previous step: {q1, q2},
and {q2}. For the former, we determine two new transitions: δ({q1, q2}, a) = {q2} and δ({q1, q2}, b) =
{q1, q2} (a loop). Note that both transitions lead to already existing states, so no new ones are
constructed. The resulting automaton is shown below.

18 CHAPTER 1. FINITE-STATE AUTOMATA

{q0} {q2}{q1, q2}
a a

b

b

Having expanded state {q1, q2}, we consider state {q2}. This time, there are no transitions
labeled b leaving the set {q2}, so we leave δ({q2}, b) undefined. As for symbol a, the transition
〈q2, a, q2〉 ∈ ∆ yields the loop δ({q2}, a) = {q2}. The automaton after adding this loop is shown
in figure 1.9.

{q0} {q2}{q1, q2}
a a

ab

b

Figure 1.9: DFSA constructed by running the subset construction algorithm on the NFSA shown in
figure 1.7.

By now, no new states are left that could be expanded: we have processed all of them. Hence,
the DFSA cannot grow any more: its construction has been completed.

A few details are important for an efficient implementation of this algorithm. Firstly, we need
to keep track of the states to be expanded. This can be achieved by putting them in a queue, i.e.
appending them to the end of a list. In each step, the first state in the list is dequeued (removed
from the queue), marked as known and processed, and the newly created states are appended to
the queue.

The second important implementation issue is that only newly created states should be en-
queued. Whenever, during the expansion of a state R, the target state R′ = δ(R, s) of a transition
in Â is determined, we need to check if R′ has already been constructed before, in which case it is
either already expanded, or awaits expansion in the queue, and need not be re-enqueued. There-
fore, we need to maintain a structure representing the part of the DFSA stateset Q̂ constructed
so far. A good choice is a hash table mapping sets of NFSA states to DFA states: with a good
implementation, a set of states can be looked up in such a hash table in almost constant time.

Since each state is placed in the queue exactly once, and the set 2Q of possible states and the
set of transitions are finite, it follows that the queue is empty after at most |2Q| = 2|Q| steps.
Thus, the algorithm always terminates.

The pseudocode of the determinization algorithm is given below. The function Determinize()
takes an NFSA A = (Σ, Q, I, F,∆) and returns a DFSA Â = (Σ, Q̂, q̂0, F̂ , δ) such that L(Â) =
L(A).

1.5. ε-TRANSITIONS 19

Algorithm 1.4.1: Determinize(Σ, Q, I, F,∆)

q̂0 ← I

Q̂← {q̂0}
enqueue(Queue, q̂0)
while Queue 6= ∅

R← dequeue(Queue)
for a ∈ Σ

δ(R, a)←
⋃

r∈R ∆(r, a)
if δ(R, a) 6∈ Q̂

Q̂← Q̂ ∪ {δ(R, a)}
enqueue(Queue, δ(R, a))
if δ(R, a) ∩ F 6= ∅

F̂ ← F̂ ∪ {δ(R, a)}
return (Σ, Q̂, q̂0, F̂ , δ)

As already mentioned, the maximum number of new states placed in in the queue is 2|Q|.
Accordingly, the worst-case running time of the subset construction algorithm is exponential, i.e.
O(2|Q|). As a result, operations involving the determinization of an automaton are often the most
costly parts of finite-state algorithms.

On the other hand, the actual running time of the algorithm depends on the shape of the NFSA
being determinized. As a result, even large NFSAs can often be determinized in a reasonable time.

In practice, subset construction can be made more efficient by employing appropriate data
structures, a topic examined in full depth by Leslie (1995). Also, often one does not need to deter-
minize the whole automaton. In such cases, lazy determinization applies the subset construction
algorithm only to a substructure of the NFSA, which typically results in significant processing
time savings (Mohri 1997).

1.5 ε-Transitions

In order to model a complex task using finite-state automata, it is common to follow a divide-and-
conquer strategy. The task is split into a number of simpler sub-tasks, for each of which an FSA is
created. Then, the sub-task FSAs are combined, yielding the desired automaton. The telephone
number NFSA presented in section 1.3 can be viewed as a somewhat simplified example of this
design: first, a simple DFSA was created for local telephone numbers, and then we extended it
with states and transitions that took care of area code prefixes.

However, the extension was done in a rather sloppy way since we just stuck an automaton
accepting the prefixes +, 0 and 00 to the front of the local telephone number automaton. As a
result, the automaton accepts any sequence of numbers starting with + provided the next digit
is not a zero, irrespective of whether or not the following sequence of digits starts with a valid
country code. For example, any string starting with +214 is accepted although it is not a valid
country code.

In order to make the FSA more accurate in a modular way, we can create three automata: one
for local phone numbers (LocalNumber), one for national area codes (AreaCode) and one for
international country codes (CountryCode).

In order to combine the three automata into one recognizing different types of telephone num-
bers, we first create a state diagram describing the intended operational semantics of such a device
(figure 1.10). The recognition process starts in an initial state q0. On reading a 0, the device can
move to the AreaCode automaton in order to recognize and consume a national area code.

Alternatively, on seeing either a + or a 00, the device may enter the module CountryCode,
which checks whether or not the remainder of the input string starts with a valid international
country code.

20 CHAPTER 1. FINITE-STATE AUTOMATA

q0

q1

AreaCode

CountryCode

LocalNumber

0

0

+

0

ε

ε

ε

Figure 1.10: A modular NFSA for local and non-local phone numbers. The modules LocalNumber,
AreaCode and CountryCode are connected by ε-transitions.

The third possibility is that there is no dialing prefix, and the input is just a local number.
In this case, we want the automaton to enter the LocalNumber module immediately, without
reading any input. Hence, the corresponding arc is labeled with the empty string symbol ε.
Accordingly, it is called an ε-transition.7

The diagram demonstrates how ε-transitions help to keep the FSA modular. However, they
also introduce a new kind of non-determinism (in addition to multiple initial states and transitions
sharing both the source state and the input label).

Consider the FSA shown in figure 1.11.

q0

q1

q2 q3

a

b

a

ε

ε

a

Figure 1.11: An FSA with ε-transitions.

Here, non-determinism occurs when the automaton reaches state q2, e.g. after consuming the
string b. The ε-transition from q2 to q3 means that the FSA might also be in state q3 or — via
the ε-transition 〈q3, ε, q0〉 — in q0.

The introduction of ε-transitions requires a change to the definition of the transition relation.
7Such transitions are not allowed by the present NFSA definition, but their semantics is intuitively clear. The

required extension of the notion of a non-deterministic automaton is captured by definition 7 on page 21.

1.5. ε-TRANSITIONS 21

Definition 7 A non-deterministic finite-state automaton with ε-transitions (an ε-NFSA) is a
quintuple A = (Σ, Q, I, F,∆) such that

• Σ is a finite alphabet

• Q is a finite set of states

• I ⊂ Q is the set of initial states of A

• F ⊂ Q are the final (accepting) states of A

• ∆ : Q× (Σ ∪ {ε})→ 2Q is the transition function.

The only difference to definition 4 is that the transition function may now contain transitions
〈q, ε, q′〉 in addition to transitions of the form 〈q, a, q′〉, a ∈ Σ, already licensed by definition 4.
However, determining whether or not a state q can be reached starting in I and consuming a
string w can no longer be done in the same way as before. The reason is that the extension of ∆
to 2Q ×Σ∗, as defined by formula (1.2), does not have a provision for ε-transitions. For example,
the set R of states reachable in the automaton in figure 1.11 from set I = {q0} via string aa is
not just ∆(I, aa) = {q2}: R = {q0, q2, q3} because q0 and q3 can be reached from q2 via a chain of
ε-transitions.

In general, whenever a state q can be reached from some R ⊂ Q by consuming a string w ∈ Σ∗,
so can any state q′ such that there is a chain of ε-transitions leading from q to q′. The set of all
such states is called the ε-closure of q. Its exact definition is as follows.

Definition 8 Let A = (Σ, Q, I, F,∆) be an ε-NFSA. For q ∈ Q, we define the ε-closure of q
recursively as follows:

• q ∈ ε-Closure(q);

• if r ∈ ε-Closure(q) and q′ ∈ ∆(r, ε), then q′ ∈ ε-Closure(q).

For the automaton depicted in figure 1.11, we obtain the following ε-closures:

ε-Closure(q0) = {q0}
ε-Closure(q1) = {q1}
ε-Closure(q2) = {q0, q2, q3}
ε-Closure(q3) = {q0, q3}

The definition of the ε-closure of a state can be extended to sets of states. If R ⊂ Q, then

ε-Closure(R) =
⋃
q∈R

ε-Closure(q)

In other words, the ε-closure of a set R of states is the union of the ε-closures of all states q ∈ R.
This allows us to extend the transition function ∆ of an ε-NFSA to strings as follows:

∆ε(R, u) =
{

ε-Closure(R) : u = ε
ε-Closure(∆(∆ε(R, v), a)) : u = va, v ∈ Σ∗, a ∈ Σ (1.3)

The first of the two cases distinguished in this formula is clear: the states reachable from R without
consuming any input are exactly the states in the ε-closure of R. Figure 1.12 illustrates this case.

The second case of formula (1.3) takes care of the recursive definition of ∆ε(R, u). If u = va,
where a is a single alphabet symbol, then we first determine ∆ε(R, v), and then take the union of
the ε-closures of all states reachable from ∆ε(R, v) via a, as shown in figure 1.13.

22 CHAPTER 1. FINITE-STATE AUTOMATA

R

∆∗
ε(R, ε)

b
c

a

ε
ε

ε

Figure 1.12: States reachable from set R without consuming any input.

∆ε(R,v)
∆ε(R,va)

b

b
c

a

b

a

ε

a

ε

Figure 1.13: Recursive construction of ∆ε(R, va) from ∆ε(R, v).

Definition 9 Let A = (Σ, Q, I, F,∆) be an ε-NFSA. Then we say that

• A consumes a string w ∈ Σ∗ if ∆ε(I, w) 6= ∅;

• A accepts w if ∆ε(I, w) ∩ F 6= ∅.

Like ε-free NFSAs, NFSAs containing ε-transitions can be determinized. However, subset
construction (algorithm 1.4.1) fails to produce correct results because it does not have any provision
for ε-transitions. Recall that, given a state R ⊂ Q of the DFSA being constructed, the target
state of the transition leaving R and consuming a symbol a ∈ Σ is determined according to the
following formula:

δ(R, a) = ∆(R, a) = {q ∈ Q : ∃r ∈ R : (r, a, q) ∈ ∆}
Obviously, this formula fails to take into account states that might be reached from a state

r ∈ R by a non-ε-transition and a number of ε-transitions.
There are two possible solutions. Firstly, it is possible to transform the input NFSA A into an

equivalent ε-free NFSA A′, and then determinize A′ using algorithm 1.4.1. The second possibility
is to modify algorithm 1.4.1 directly so that it allows for ε-transitions. We will explore these two
options separately in the following two subsections.

1.5.1 ε-Elimination

The ε-elimination algorithm proceeds in two steps. First, the procedure Compute-ε-Closures()
(algorithm 1.5.1) determines the ε-closures of the states of the original automaton. Based on this

1.5. ε-TRANSITIONS 23

step, the ε-transitions are removed and replaced by equivalent non-ε-transitions, ensuring that the
resulting automaton is equivalent to the original one.

Step 1: Computation of ε-Closures

In order to compute the ε-closures of all states in an FSA, we first simplify its structure by elimi-
nating ε-cycles, i.e. loops consisting entirely of ε-transitions. Such a loop is shown in figure 1.14 on
the left, where we can go from q1 to q2, from q2 to q3 and from there back to q1 without consuming
any input. ε

εε

q1 q2

q3

q4

q5

q1−2−4

q3

q5

a

b

a

b

Figure 1.14: States q1, q2 and q4 form an ε-loop and can be collapsed into a single state q1−2−4.

The states q1, q2 and q3 form what is called a strongly connected component in graph theory:
each of them can be reached from any other state in the component (Cormen, Leiserson, Rivest
and Stein 2001). Since no input is consumed when we move between the states, they are equivalent
and can be merged into a single state, as shown in figure 1.14 on the right. All transitions leaving
or entering any of the three states in the ε-cycle have to be made to leave/enter the new state
(q1−2−4), respectively.

Once ε-cycles have been eliminated, the following algorithm, based on depth-first search, can
be used to determine the epsilon closures of the states.

Algorithm 1.5.1: Compute-ε-Closures(Σ, Q, I, F,∆)

for q ∈ Q
PROCESSED[q]← false
ε-Closure[q]← {q}

for q ∈ Q
if PROCESSED[q] = false

Compute-ε-Closure(q)

procedure Compute-ε-Closure(q)
PROCESSED[q]← true
for r ∈ ∆(q, ε)

if PROCESSED[r] = false
Compute-ε-Closure(r)

ε-Closure[q]← ε-Closure[q] ∪ ε-Closure[r]

The main idea behind this algorithm is that the ε-closure of a state q is the union of the set
{q} and the ε-closures of all states r ∈ ∆(q, ε), as shown in figure 1.15. Since the automaton is ε-
cycle-free, the order in which states are considered corresponds to their topological sort: each state

24 CHAPTER 1. FINITE-STATE AUTOMATA

q is considered after all states r such that r ∈ ∆(q, ε). Therefore, the computation of ε-Closure(r)
is complete before ε-Closure(q) =

⋃
r∈∆(q,ε) ε-Closure(r) is determined.

ε-Closure(r1)

ε-Closure(r2)

ε-Closure(q)

q

r1

r2

r3

ε

ε

ε a

b

Figure 1.15: Recursive definition of the ε-closure of a state q: ε-Closure(q) = ε-Closure(r1)∪ε-Closure(r2)∪
{q}.

Thus, for each q ∈ Q we call the subroutine Compute-ε-Closure(q), which makes sure that the
ε-closures of all states r ∈ ∆(q, ε) are computed before we take their union with {q} and make it
the value of the ε-closure of q. The procedure calls itself recursively for all states r′ ∈ ∆(r, ε), etc.

For each state q ∈ Q, we maintain the Boolean flag PROCESSED[q] which tells us whether or
not q has already been processed, i.e., the ε-closure of q has been computed.

Initially, PROCESSED[q] = false for all q. The value of this flag is set to true as soon as the
procedure Compute-ε-Closure() is called with argument q. This makes sure the closure com-
putation is done exactly once for each state. As a result, the procedure Compute-ε-Closure()
is invoked at most |Q| times. The cost of each call to this function depends on the implementation
of the set union operation. It is possible to keep it constant, in which case the complexity of
algorithm 1.5.1 is O(|Q|).

Step 2: Elimination of ε-Transitions

Once the computation of ε-closures has been completed, the algorithm creates a new ε-free NFSA
A′ = (Σ, Q′, I ′, F ′,∆′) equivalent to A.

The basic idea is illustrated by figure 1.16, which shows the path of a string in an ε-NFSA.
Note that the path is composed of:

• a (possibly empty) sequence of ε-transitions starting in an initial state q0 and ending in some
state p;

• a sequence of paths of the form: a non-ε-transition followed by a (possibly empty) sequence
of ε-transitions (here: qa

a→ q′a
ε→ . . .

ε→ qb, qb
b→ q′b

ε→ . . .
ε→ qc and qc

c→ q′c
ε→ . . .

ε→ qf).

It is easy to see that a slight modification of the automaton can create an ε-free path accepting
abc by:

• starting in state p straight away (thus making p an initial state);

• folding all paths of the form q
x→ q′

ε→ . . .
ε→ q′′ into a single transition q

x→ q′′.

1.5. ε-TRANSITIONS 25

q0

. . .

qa q′a . . . qb q′b . . . qc q′c . . . qf

ε

ε

a ε ε b ε ε c ε εc

a b c

Figure 1.16: Path of the string abc in an ε-NFSA and the corresponding ε-free path created by merging
transitions of the form q

x→ q′
ε→ . . .

ε→ q′′ into a single transition q
x→ q′′.

In order to make sure such an ε-free path exists for each string accepted by the original NFSA,
we need to:

• make sure that all states reachable from an initial state via ε-transitions are initial: I ′ =
ε-Closure(I);

• for each transition 〈q, a, r〉, replace the ε-transitions defining the ε-closure of r by transitions
〈q, a, r′〉 such that r′ ∈ ε-Closure(r).8 This step is illustrated by figure 1.17.

ε-Closure(r)

a

a

a

q r

r1

r2

r3

ε

ε

ε

a

Figure 1.17: Processing of the transition 〈q, a, r〉 (marked by the thick arrow) in the ε-elimination algo-
rithm. The ε-transitions (marked in grey) defining the ε-closure of q are replaced by transitions labeled
a, from q to the respective target states.

The pseudocode of Remove-ε() is listed below. It starts with the computation of ε-closures.
Then all states reachable from I without consuming any input are declared initial (I ′ ← ε-Closure(I)).
The stateset of A′ is identical to the stateset Q of A. The set of final states F ′ and the transition
relation ∆′ are initially empty.

8Note that r ∈ ε-Closure(r), so the original non-ε-transition 〈q, a, r〉 is kept.

26 CHAPTER 1. FINITE-STATE AUTOMATA

After initialization, the algorithm traverses the set of all non-ε-transitions in the original au-
tomaton A and performs the ε-closure expansion illustrated by figure 1.17. Each non-ε-transition
〈q, a, r〉 in A generates transitions of the form 〈q, a, r′〉 such that r′ is in the ε-closure of r.
After this operation, the algorithm loops through the states of A′ and forms F ′ out of those states
q from which a final state in A can be reached without consuming any input (ε-Closure(q)∩F 6= ∅).

Algorithm 1.5.2: Remove-ε(Σ, Q, I, F,∆)

Compute-ε-Closures(A)
I ′ ← ε-Closure(I)
F ′ ← ∅
∆′ ← ∅
for 〈q, a, r〉 ∈ ∆, a 6= ε

for r′ ∈ ε-Closure(r)
∆′ ← ∆′ ∪ {〈q, a, r′〉}

for q ∈ Q
if ε-Closure[q] ∩ F 6= ∅

F ′ ← F ′ ∪ {q}
return (A′ = (Σ, Q, I ′, F ′,∆′))

The resulting automaton A′ is ε-free, so it can be determinized using the basic version of the
subset construction algorithm (algorithm 1.4.1).

1.5.2 Subset Construction with ε-Transitions

The notion of ε-closures can be directly incorporated into the subset construction algorithm. As
in the basic algorithm 1.4.1, the main idea is to perform an off-line computation of sets reachable
via strings consumed by the original non-deterministic automaton. For an ε-free NFSA, these are
the possible values of ∆(I, w) for w ∈ Σ∗. For an ε-NFSA, we need to consider the possible values
of the function ∆ε(I, w), as defined by equation (1.3). This consideration leads to the following
changes to the algorithm:

The initial state. With w = ε, we obtain q̂0 = ε-Closure(I).

The transition function. In the original algorithm, the value δ(R, a) of the deterministic transi-
tion function is determined according to the recursive clause of equation (1.2), which extends
∆ : 2Q × Σ→ 2Q to the domain 2Q × Σ∗. Thus, δ(R, a) = ∆(R, a).

In an ε-NFSA, we need to substitute the corresponding clause of equation 1.3, which yields:

δε(R, a) = ε-Closure(∆(R, a)) (1.4)

This formula yields δε(R, a) = ∅ if no transitions labeled a leave any of the states in R. We
interpret this situation as equivalent to δε(R, a) undefined.

The final states. For a string w to be accepted by A, we require that δε(I, w) ∩ F 6= ∅ (see
definition 9 on page 22). This immediately yields the definition of F̂ :

F̂ = {R ∈ Q̂ : R ∩ F 6= ∅}

(Q̂ ⊂ 2Q is the stateset of the deterministic automaton).

The actual pseudocode is given in algorithm 1.5.3, which is identical in structure to the orig-
inal subset construction (algorithm 1.4.1), the only difference being the definition of the ini-
tial state (q̂0 ← ε-Closure(I) as opposed to q̂0 ← I) and the transition function (δε(R, a) ←
ε-Closure(

⋃
r∈R δ(r, a)) as opposed to δε(R, a)←

⋃
r∈R δ(r, a)).

1.6. EQUIVALENCE OF AUTOMATA 27

Algorithm 1.5.3: ε-Determinize(Σ, Q, I, F,∆)

Compute-ε-Closures(A)
q̂0 ← ε-Closure(I)
Q̂← {q̂0}
δε ← ∅
F̂ ← ∅
enqueue(Queue, q̂0)
while Queue 6= ∅

R← dequeue(Queue)
for a ∈ Σ

δε(R, a)← ε-Closure(∆(R, a))
if δε(R, a) 6∈ Q

Q̂← Q̂ ∪ {δε(R, a)}
enqueue(Queue, δε(R, a))
if δε(R, a) ∩ F 6= ∅

F̂ ← F̂ ∪ {δε(R, a)}
return (Σ, Q̂, q̂0, F̂ , δε)

1.6 Equivalence of Automata

In section 1.4, we saw two different automata accepting exactly the same language, but having
a different number of states and transitions (figures 1.7 and 1.8). We call such automata A, A′

equivalent and write A ≡ A′ if L(A) = L(A′). Obviously, it would be advantageous to be able
to determine whether or not two given automata are equivalent. The practical implications are
straightforward: for example, replacing the larger automaton by the smaller one would save space
(this idea will be fully explored in section 1.7, which deals with DFSA minimization).

In the particular case of figures 1.7 and 1.8, the smaller automaton is part of the larger one,
the remainder being redundant because the extra states and transitions cannot be accessed from
the initial state. However, it may also happen that two completely different automata accept the
same language, as shown in figure 1.18.

q0

q1

q2

q3

q4

a

b

a

b

a

b

q0

q1

q2 q3 q4

a

b
b b

a

b

Figure 1.18: Two equivalent DFSAs.

28 CHAPTER 1. FINITE-STATE AUTOMATA

The reader may check that the two DFSAs indeed accept the same language: a non-empty
sequence of a’s or a non-empty sequence of b’s. In order to find an algorithmic way of determining
the equivalence of two automata A = (Σ, Q, q0, F, δ) and A′ = (Σ, Q′, q′0, F

′, δ′), we start with a
very näıve idea, which we will eventually make work realistically. Note that all strings in Σ∗ can
be enumerated in order of ascending length: ε, a, b, aa, ab, ba, bb, aaa, . . .We may check for
each string w, in this order, whether or not A and A′ accept w. If A 6≡ A′, then w ∈ L(A) but
w 6∈ L(A′) for some w (or vice versa). As soon as we discover such a w, we know the automata
are not equivalent.

Obviously, the outlined procedure may never terminate when applied to a pair of equivalent
DFSAs as it keeps checking the membership of increasingly longer w’s forever, never finding a
counterexample. Fortunately, it turns out that we only need to check strings up to a certain
length. Consider the two non-equivalent automata shown in figure 1.19.

q0 q1

q2

a

b

a

p0 p1
a

b

b

b

Figure 1.19: Two automata that are not equivalent.

The non-equivalence of the automata is attested e.g. by the string w = ababbab, which is
accepted by the one on the left (A), but not by the one on the right (A′): δ(q0, ababbab) = q1 ∈ F ,
but δ′(p0, ababbab) = p0 6∈ F ′.

Aligned, the paths for w = ababbab in both automata yield a sequence of 8 pairs of states
〈q, p〉 ∈ Q×Q′.

u ε a ab aba abab ababb ababba ababbab
δ(q0, u) q0 q1 q2 q2 q1 q2 q2 q1

δ′(p0, u) p0 p1 p0 p1 p0 p0 p1 p0

However, since |Q| = 3 and |Q′| = 2, there are only |Q×Q′| = 6 distinct pairs 〈q, p〉. Therefore,
the sequence of state pairs must contain repetitions. Indeed, the pair 〈q2, p0〉 is reached first after
consuming the string ab and then after consuming ababb. In other words, the sequence of state
pairs contains a cycle, as shown in figure 1.20 (the cycle is marked in grey).

The existence of a cycle means that the pair 〈q1, p0〉 can be reached from 〈q0, p0〉 via a string
shorter than ababbab. We can skip the cycle altogether and follow the path 〈q0, p0〉 → 〈q1, p1〉 →
〈q2, p0〉 → 〈q2, p1〉 → 〈q1, p0〉 (marked in black), corresponding to the string abab. Thus, if we
consider candidate strings in order of increasing length, the non-equivalence of A and A′ will be
discovered before ababbab is considered.

This result holds for any string w of length |Q| · |Q′| or larger: if the non-equivalence of A
and A′ is attested by w, then it is also attested by a string w′ shorter than w. Therefore, the
non-equivalence of A and A′ will be discovered before the algorithm reaches the first word of length
|Q| · |Q′|. As a result, we only need to check words shorter than that; if all of them pass the test,

1.6. EQUIVALENCE OF AUTOMATA 29

〈q0, p0〉

〈q1, p1〉

〈q2, p0〉

〈q2, p1〉

〈q1, p0〉a b a b

〈q0, p0〉〈q0, p1〉

b a

b

Figure 1.20: The aligned paths of string ababbab in two DFSAs A and A′, containing a cycle.

we can be sure A and A′ are equivalent.
Still, checking every string separately is obviously suboptimal. For example, if aab is the

current string, we know that its prefixes ε, a and aa have already been tested before. Hence,
whenever we reach a pair 〈q, q′〉 via some string w, we can keep the pair as a partial result which
we will pick up when we move to strings of the form wa, a ∈ Σ, because then δ∗(q0, wa) = δ(q, a)
and δ′∗(q′0, wa) = δ′(q′, a).

In order to consider states and strings in this particular order, we may use the technique of
exploring all paths in a DFSA using a queue of state pairs, in a way analogous to the queue of
states in the subset construction algorithm in section 1.4.

Note that checking each string now requires only one lookup in the transition table of the
DFSA per automaton. In the end — at latest after |Q| · |Q′| entries have been processed — there
is no way a new pair can be created, and the algorithm terminates.

In addition, a data structure is needed to store the “old” pairs of states, which is crucial in
ensuring that the algorithm actually terminates. A hash table can guarantee that this lookup is
done in nearly constant time.

The algorithm is presented in the following piece of pseudocode.

Algorithm 1.6.1: CheckEquivalence((Σ, Q, q0, F, δ), (Σ, Q′, q′0, F
′, δ′))

if (q0 ∈ F and q′0 6∈ F ′) or (q0 6∈ F and q′0 ∈ F ′)
return (False)

Enqueue(Queue, 〈q0, q
′
0〉)

while Queue 6= ∅
〈q, q′〉 ← Dequeue(Queue)
for a ∈ Σ

if both δ(q, a), δ′(q′, a) are defined
if (δ(q, a) ∈ F and δ′(q′, a) 6∈ F ′) or (δ(q, a) 6∈ F and δ′(q′, a) ∈ F ′)
return (False)

else if 〈δ(q, a), δ′(q′, a)〉 is a new pair
Enqueue(Queue, 〈δ(q, a), δ′(q′, a)〉)

else if only one of δ(q, a), δ′(q′, a) is defined
return (False)

return (True)

The algorithm checks each accessible state pair 〈q, q′〉 exactly once, inspecting all transitions
leaving q and q′. Since there are at most |Σ| transitions leaving each state, the running time of
the algorithm is bounded by O(|Q| · |Q′| · |Σ|).

30 CHAPTER 1. FINITE-STATE AUTOMATA

1.7 Minimization

The previous section shows that automata accepting the same language may vary in form and
size. For obvious reasons, it is desirable to keep an automaton as small as possible. Therefore,
two closely related questions arise:

• Can a large automaton be transformed into a smaller one, provided such a smaller one exists?

• If A is a DFSA, is there a minimal automaton Amin equivalent to A? Is there an algorithm
for constructing Amin from A?

It turns out that the answer to both questions is “yes”. Consider the two DFSAs shown in
figure 1.21.

q0

q1

q2

q3

a

b

c

b

a

a

q0

q1

q2

a

b,c

b

a

Figure 1.21: Two equivalent DFSAs.

It is obvious that both DFSAs accept the same language: b, c or ab followed by any number of
a’s (including 0). The DFSA on the right contains only three states, as opposed to the four states
in the DFSA on the left.

A closer inspection of the structure of both automata reveals that the smaller DFSA can be
created from the larger one by deleting q3 and redirecting all transitions leading to q3 so that
they point to q2 instead. This redirection is possible because q2 and q3 “do the same job” in the
automaton: once the DFSA has entered either state, it stays in it accepting any number of a’s
(and failing on seeing any symbol other than a). Thus, replacing q3 with q2 does not change the
functionality of the automaton.

States that “do the same job”, such as q2 and q3, are called equivalent. In the remainder of
this section, we will see that a DFSA can be minimized by merging such equivalent states.

In order to formally define the notion of state equivalence, one first needs to formalize the
concept of the “job” of a state q in a DFSA. It turns out that the best option is to look at the
strings that lead to a final state when we start accepting them in the state under consideration: the
set of such strings is {ε, a, aa, aaa, . . .} for both q2 and q3. Such a set is called the right language
of the state q. Its formal definition is as follows.

Definition 10 (Right language of a state) Let A = (Σ, Q, q0, F, δ) be a DFSA. The right language
−→
L (q) of a state q ∈ Q is defined as the set of all strings accepted by A starting in state q:

−→
L (q) = {w ∈ Σ∗ : δ∗(q, w) ∈ F}

1.7. MINIMIZATION 31

Obviously,
−→
L (q0) = L(A). Furthermore, if the right languages of some two states q and q′ are

identical, the states are interchangeable as targets of transitions, as we saw in the preceding
example.

This definition allows us to capture the notion of state equivalence.

Definition 11 (State equivalence)
Let A = (Σ, Q, q0, F, δ) be a DFSA. If q, q′ ∈ Q, then we say that q and q′ are equivalent

(written q ≡ q′) if and only if
−→
L (q) =

−→
L (q′)

The relation ≡ is an equivalence relation.9 It partitions the stateset Q into a number of equivalence
classes, i.e., disjoint sets Q1, . . . Qm such that

⋃m
i=1 Qi = Q and q ≡ q′ for all q, q′ ∈ Qi. The count

of ≡, i.e. the number of equivalence classes, is denoted | ≡ |.
Figure 1.22 shows such a partition of a DFSA stateset into 5 classes. The reader may check

that a) the right languages of all states belonging to each class are identical (e.g.
−→
L (q1) =

−→
L (q5) =

−→
L (q6) = {ε, a, aa, aaa, . . .}) and b) whenever two states q, q′ belong to two different

classes,
−→
L (q) 6=

−→
L (r′).

It is easy to see that a DFSA A = (Σ, Q, q0, F, δ) containing two equivalent states q and q′ can
be transformed into a smaller but equivalent automaton Â = (Σ, Q\{q′}, q0, F\{q′}, δ̂),10 where δ̂
is the original transition function δ with all transitions leading to q′ redirected to q:

δ̂(r, a) =
{

q : δ(r, a) = q′

δ(r, a) : otherwise (1.5)

In order to reduce the size of a given DFSA A, one can follow the following two-step procedure.

• determine all pairs of equivalent states q, q′;

• apply the above reduction step until no such pair q, q′ is left in the automaton.

It can be proved (the Myhill-Nerode theorem) that the result is indeed the smallest DFSA (in
terms of the size of Q) accepting the language L(A).

Informally, the argument goes as follows. Since we never merge two equivalence classes, their
number remains constant throughout the reduction steps. At the end, we are left with one state
per equivalence class. This is intuitive: we cannot do any better, because we need | ≡ | states in
order to distinguish the | ≡ | right languages found in in L(A). On the other hand, as long as
|Q| > | ≡ |, we can reduce the size of Q by applying the above reduction step.

This leads to the following minimality criterion:

Proposition 1 (Minimality criterion for DFSAs)
Let A = (Σ, Q, q0, F, δ) be a DFSA. A is minimal if and only if there is no pair of distinct but

equivalent states in Q:

∀q, q′ ∈ Q : q ≡ q′ ⇐⇒ q = q′.

The result of applying the minimization procedure to the automaton in figure 1.22 is shown in
figure 1.23.

If q ≡ q′, then the choice of the state to be eliminated is of course arbitrary. We adopt the
convention of always keeping the state with the smaller index. As a result, each of the remaining
states is the one with the smallest index in its respective equivalence class.

9A relation ≡ on the Cartesian product Q×Q is called an equivalence relation if it is reflexive (q ≡ q), transitive
(if q ≡ q′ and q′ ≡ q′′, then q ≡ q′′) and symmetric (if q ≡ q′ then q′ ≡ q).

10A\B denotes the difference of the sets A and B, e.g. {1, 2, 3, 4}\{2, 4, 5} = {1, 3}.

32 CHAPTER 1. FINITE-STATE AUTOMATA

q0 q1

q5q2 q6

q3 q4

q7

a

b a

b

a

a

b

aa

C0

C1
C2

C3

C4

Figure 1.22: Equivalence classes defined on the stateset of a DFSA by ≡.

The pseudocode for the generic minimization procedure is given in algorithm 1.7.1.

Algorithm 1.7.1: Minimize(A = (Σ, Q, I, F, δ))

EqClass[]← Partition(A)
q0 ← min(EqClass[q0])
for 〈q, a, q′〉 ∈ δ

δ(q, a)← min(EqClass[q′])
for q ∈ Q
if q 6= min(EqClass[q])
Q← Q\{q}
if q ∈ F

F ← F\{q}

The algorithm starts with a call to Partition(A). This procedure determines all equivalence
classes of states with respect to the relation ≡ and returns an array that associates each state
q with its equivalence class (EqClass[q]). We assume that Q is a set of non-negative integers
(Q ⊂ IN0), and always keep the state min(C) as a placeholder for class C.

1.7. MINIMIZATION 33

q0

q1q2

q3 q4

a
b

a

b

a,b

a

Figure 1.23: The result of applying minimization to the DFSA in figure 1.22.

In the next step, the algorithm redirects all transitions 〈q, a, q′〉 to point to min(EqClass[q′])
(the only state to be left in the equivalence class of q′). The last loop of the algorithm removes
all redundant states from Q and F .

In this way, we have reduced the problem of minimizing a DFSA to the task of computing the
equivalence relation ≡ on the stateset. Thus, the exact implementation of Partition(A) is now
the actual challenge.

One possible, although näıve, solution would be to check the equivalence of q and q′ separately
for every pair q, q′ ∈ Q. If Ar = (Σ, Q, r, F, δ) denotes the automaton constructed out of A =
(Σ, Q, q0, F, δ) by making r ∈ Q the initial state, then obviously

−→
L (r) = L(Ar), and hence q ≡ q′

if and only if L(Aq) = L(Aq′).
The pseudocode for the näıve minimization procedure is given in algorithm 1.7.2.

Algorithm 1.7.2: NäıvePartition(A = (Σ, Q, I, F, δ))

for each q ∈ Q
EqClass[q] = {q}

for each q ∈ Q
for each q′ ∈ Q

if EqClass[q] 6= EqClass[q′] and CheckEquivalence(Aq, Aq′) = True
EqClass[q]← EqClass[q] ∪ EqClass[q′]
EqClass[q′]← EqClass[q]

The algorithm uses an array EqClass of pointers to disjoint sets to represent the sets of
equivalence states. The sets are initialized to {q} for each state q in the first for each-loop. Then,
in the two nested loops, whenever we discover that q ≡ q′, the respective equivalence classes are
merged, and the pointers EqClass[q] and EqClass[q′] are both made point to the result.

As for the running time, both the outer and the inner loop of the algorithm execute |Q|
times. The running time of the procedure CheckEquivalence(A,A′), which is invoked inside
the inner loop, is O(|Q|2 · |Σ|). As a result, the running time of the näıve minimization algorithm
is O(|Q|4 · |Σ|). In the next few subsections, we will see how we can improve on that.

1.7.1 A Dynamic Programming Solution

The main reason for the inefficiency of the näıve algorithm is that it traverses the whole automaton
Aq/Aq′ each time it wants to determine if q and q′ are equivalent, and then never re-uses the result.

34 CHAPTER 1. FINITE-STATE AUTOMATA

However, results of previous equivalence checks are often significant and can save processing time.
Consider the structure shown in figure 1.24.

p q

p′ q′

a

bc

a
a

a

b

b

Figure 1.24: Fragment of a DFSA. If q 6≡ q′ then p 6≡ p′.

Suppose we have already checked the pair 〈q, q′〉 and established that q 6≡ q′. If in some future
step we are to check the equivalence of p and p′, it is obviously not necessary to traverse the whole
automaton. By inspecting the two transitions labeled a and leaving p and p′, respectively, we can
make an important observation.

Since q 6≡ q′, we know that
−→
L (q) 6=

−→
L (q′), i.e. there exists a string u that is in one of the right

languages
−→
L (q),

−→
L (q′), but not in the other one. The problem is symmetric, so we may assume

that u ∈
−→
L (q), and u 6∈

−→
L (q′).

Since we can get from p to q consuming a, it follows that au ∈
−→
L (p). On the other hand,

au 6∈
−→
L (p′), because consuming the first character (a) gets us to state q′ with the string u left,

which cannot be accepted since u 6∈
−→
L (q′). This in turn means

−→
L (p) 6=

−→
L (p′), i.e. p 6≡ p′.

In more abstract terms, this means that we can propagate the non-equivalence property: when-
ever we find out that q 6≡ q′ for some q, q′ ∈ Q, we can infer that p 6≡ p′ for all states p, p′ such
that δ(p, a) = q and δ(p′, a) = q′ for some symbol a ∈ Σ.

The propagation itself has to start somewhere, preferably where the non-equivalence q 6≡ q′ is
easy to establish locally, without looking at other states. This is possible when only one of the
states q, q′ is final.11 Therefore, the propagation algorithms are initialized with the final-nonfinal
partition of the stateset.

Another case of easily establishable non-equivalence is shown in figure 1.25 below. Both states
q and q′ are non-final, but the transition δ(q′, a) = r is defined, while δ(q, a) is not. As a result,
−→
L (q′) does not contain any strings starting with a. On the other hand, such strings are present
in
−→
L (q) provided

−→
L (r) 6= ∅, which in turns means that at least one final state can be reached

starting in r.

11Obviously,
−→
L (q) 6=

−→
L (q′) if q ∈ F and q′ 6∈ F , because ε ∈

−→
L (q), but ε 6∈

−→
L (q′).

1.7. MINIMIZATION 35

q

q′

r

a

a
a

a

b

Figure 1.25: Fragment of a DFSA. The transition δ(q, a) is defined, while δ(q, a) = r is not. If the DFSA
is trim, this means that q 6≡ q′.

Checking if
−→
L (r) = ∅ is a non-local operation, but states r such that

−→
L (r) = ∅ are obviously

redundant since reaching r means failure. As a result, all transitions entering such a state can be
removed from the automaton without affecting its functionality. In a similar way, one can remove
all states not reachable from an initial state — the automaton will never be able to enter them
anyway.

Thus, a state can always be removed unless it belongs to a path for an initial to a final state.
States that do belong to such paths are called coaccessible. The removal of non-coaccessible states
and transitions is called trimming. An FSA is called trim if it does not contain non-coaccessible
states.

In effect, the following two criteria can be used to establish the non-equivalence of two states
q and q′ in a trim DFSA:

• only one of q, q′ is final;

• there is a symbol a ∈ Σ such that δ(q, a) is defined, but δ(q′, a) is not, or vice versa.

There exist several algorithms that propagate the non-equivalence information into the DFSA.
In the following sections, we review the three most commonly used ones. Since the original versions
of some of them were formulated for complete automata, we present a sightly modified version
of them that have been adapted to automata with partial transition functions, which are — as
already mentioned — much more common in programming practice.

Table Filling Algorithm (Hopcroft & Ullman)

This first procedure to be discussed here represents the equivalence relation as a |Q| × |Q| table
Equiv. Each cell of the table can have one of the Boolean values True (represented by the bit
value 1) and False (bit value 0).

The table is initially filled with 1’s, while 0’s are successively filled into the appropriate cells.
Accordingly, the algorithm is sometimes referred to as the table-filling minimization method. The
initial setting for the automaton in figure 1.22 is as shown in table 1.1.

Since the equivalence relation ≡ is symmetric (q ≡ q′ ⇐⇒ q′ ≡ q), there is no need to
represent both Equiv[q, q′] and Equiv[q′, q] by separate cells. Therefore, each cell Equiv[q, q′] is
assumed to be for q < q′. This reduces the space required by the algorithm by more than 50%.

At each intermediate step, Equiv[q, q′] = 0 means that we already know the states q and q′ are
not equivalent. On the other hand, Equiv[q, q′] = 1 means that so far, we haven’t seen anything

36 CHAPTER 1. FINITE-STATE AUTOMATA

state q0 q1 q2 q3 q4 q5 q6

q7 1 1 1 1 1 1 1
q6 1 1 1 1 1 1
q5 1 1 1 1 1
q4 1 1 1 1
q3 1 1 1
q2 1 1
q1 1

Table 1.1: Initial setting of the table filling algorithm.

indicating that q and q′ are not equivalent. When the algorithm terminates, the remaining cells
filled with 1’s indicate the actual equivalencies.

The algorithm is initialized by finding all pairs of states 〈q, q′〉 for which the non-equivalence
q 6≡ q′ can be established locally using the two criteria derived in section 1.7.1: either only
one of the two states is final, or only one of δ(q, a) and δ(q′, a) is defined for some a ∈ Σ.
In order for the second criterion to be correct, the DFSA is required to be trim. Procedure
LocalEquivalenceCheck(q, q′) implements this check.

Algorithm 1.7.3: LocalEquivalenceCheck(q, q′)

if (q ∈ F and q′ 6∈ F) or (q 6∈ F and q′ ∈ F)
return (False)

if ∃a ∈ Σ such that only one of δ(q, a), δ(q′, a) is defined
return (False)

return (True)

Whenever this happens, we set Equiv[q, q′] = 0, and know that this new piece of information
might be useful in inferring the non-equivalence of some other states. Thus, non-equivalence
information is propagated backwards by calling procedure Propagate(p, p′). For each symbol
a ∈ Σ, the procedure traverses all transitions 〈p, a, q〉, 〈p′, a, q′〉 and, unless it has already been
done, it sets Equiv[p, p′] to False, and invokes itself (Propagate(p, p′)) recursively in order to
propagate the non-equivalence information further.

The symbol δ−1
a (q) denotes the set of all states p such that there is a transition from p to q

labeled with symbol a.

Algorithm 1.7.4: Propagate(q, q′)

for a ∈ Σ
for p ∈ δ−1

a (q)
for p′ ∈ δ−1

a (q′)
if Equiv[min(p, p′),max(p, p′)] = 1
Equiv[min(p, p′),max(p, p′)]← 0
Propagate(p, p′)

The order in which the pairs q, q′ are tested for equivalence is arbitrary. Let us assume that
the pair q4, q5 is picked first. Both states are final, but δ(q4, a) is defined while δ(q5, a) is not.
Thus, we set Equiv[q4, q5] to 0 and invoke Propagate(q4, q5).

The procedure discovers that q4 and q5 can be reached from q3 and q1, respectively, via the
symbol a. Thus, q1 6≡ q3, and hence Equiv[q1, q3] ← 0. Another call to Propagate() follows,
this time with the parameters q1 and q3, establishing that q0 6≡ q2. The subsequent call to
Propagate(q0, q2) does not lead to any further propagation of the available information because
there are no transitions entering q0 (recall that non-equivalence is propagated backwards!).

Table 1.2 shows the state of the equivalence table after this step.

1.7. MINIMIZATION 37

state q0 q1 q2 q3 q4 q5 q6

q7 1 1 1 1 1 1 1
q6 1 1 1 1 1 1
q5 1 1 1 1 0
q4 1 1 1 1
q3 1 0 1
q2 0 1
q1 1

Table 1.2: State equivalence table after the first call to Propagate() in the main loop.

The reader may check that the algorithm eventually arrives at the following values for the cells
of the table, which encode the partition shown in figure 1.22.

state q0 q1 q2 q3 q4 q5 q6

q7 0 0 0 0 1 0 0
q6 0 1 0 0 0 0
q5 0 1 0 0 0
q4 0 0 0 0
q3 0 0 0
q2 0 0
q1 0

Table 1.3: Final setting of the table filling algorithm.

The main loop of the algorithm is shown in algorithm 1.7.5 below.

Algorithm 1.7.5: TableFillingPartition(A = (Σ, Q, I, F, δ))

for q, q′ ∈ Q, q < q′

Equiv[q, q′]← 1
for q ∈ Q

for q′ ∈ Q, q < q′

if Equiv[q, q′] = 1 and LocalEquivalenceCheck(q, q′) = False
Equiv[q, q′]← 0
Propagate(q, q′)

Note that the procedure Propagate(q, q′) is never called twice for one pair of states because
the program checks if Equiv[q, q′] is already set to False before calling it. Therefore, the running
time of the algorithm is bounded by the number of possible state pairs (|Q|2) times the size of the
alphabet: O(|Q|2 · |Σ|). This is a significant improvement over the O(|Q|4 · |Σ|) running time of
the näıve algorithm.

The main disadvantage of the table filling algorithm is due to its high space requirements.
The table Equiv[] needs cells in an order of magnitude of |Q|2, which is unfeasible for large
statesets (even if we only need one bit per pair). Note that this is not a worst-case estimate, such
as the O(2|Q|) upper bound on the size of the deterministic automaton in subset construction
(algorithm 1.4.1). A |Q| × |Q| table must be preallocated for any input automaton. Thus, |Q|2 is
a tight upper and lower bound on the space requirements of the table-filling algorithm. Formally,
this is abbreviated Θ(|Q|2) (see also the frame on page 38).

38 CHAPTER 1. FINITE-STATE AUTOMATA

Θ and Ω -Notation

With the O-notation introduced earlier in this book we can express the worst-case time or
space complexity of algorithms and data structures, i.e., when we say that a complexity
of some algorithm or data structure is O(f(n)) we merely state that for all n > n0 this
complexity is bounded from above by c · f(n) for some constant c. However, this does not
say anything about the best case, for which a more favorable asymptotic approximation may
exist.

In other cases, we can estimate that a runtime or space requirement is exactly and tightly
bound to a certain function for all or almost all values of n (so to speak, best case = worst
case). For this purpose one can use the so called Θ-notation. Formally speaking, Θ(f(n))
denotes the set of all functions which grow exactly as f(n), i.e., g(n) ∈ Θ(f(n)) if there exist
constants c1 and c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for n > n0 for some n0. Formally f(n)
is called an asymptotic tight bound for g(n). So when we say that a complexity is Θ(f(n)) we
express the fact that for each value of n the running time oscillates around the value of f(n).

Additionally, Ω-notation is used for expressing asymptotic lower bounds, i.e., Ω(f(n))
denotes the set of all functions which grow at least as fast as f(n). The Ω-notation can be
used for expressing the best-case running time, or lower bounds on arbitrary inputs. When we
say that the running time of an algorithm is Ω(f(n)), we mean that there exists a non-negative
constant c such that the running time is at least c · f(n) for all inputs of size n.

Aho, Sethi & Ullman

In the table-filling algorithm, information about the partitioning of Q according to the relation ≡
is split into singular statements of the form q ≡ q′/q 6≡ q′, each filling one cell in the table. For a
stateset of size n, we therefore need n(n− 1)/2 = Θ(n2) cells.

A more space-efficient representation is to associate each state with the ID of the block it
belongs to. The blocks are equivalence classes in the making: the elements of the partition of Q
that is defined by the q 6≡ q′ information propagated so far. Obviously, this representation requires
only Θ(|Q|) space.

As in the table-filling algorithm, we initialize the partition with the blocks F and Q\F , and
then successively propagate the available non-equivalence information. This time, propagation
means successively splitting existing blocks. Technically, this process is referred to as refining an
equivalence relation.

In each iteration, the algorithm selects a symbol a ∈ Σ and inspects the blocks to which the
source and target states of all transitions labeled a belong. For each block B on the source side,
two cases may occur:

Case 1: If the transitions end up in different blocks, the current block is split accordingly, as
shown in figure 1.26. Note that this split may induce the split of some block C (marked in
grey) in the next step.

Case 2: If all the transitions end up in the same block, the block is kept (figure 1.27).

Since each split may induce further splits (as in figure 1.26, where the splitting of B causes C to
be split), repeating the above procedure makes sure the non-equivalence information is propagated.

Note that each block B is split according to the blocks B1 . . . Bm reachable from B via the
current symbol a: all q such that δ(q, a) ∈ Bi end up in the same block after the split. Therefore,
the algorithm for splitting the blocks can be stated informally as follows:

1.7. MINIMIZATION 39

B′′′

B

B′

B′′

a

a

a
a

C b

b

Figure 1.26: The block B is split because transitions leaving B and labeled a end up in three different
blocks: B′, B′′ and B′′′. The split (marked by the dashed lines) reflects the blocks of the target states.
Note that this split of B will also cause the block C to be split when the algorithm inspects transitions
labeled b and leaving C.

B

B′

a

a

a

a

Figure 1.27: Block B is not split because all transitions leaving B and labeled a end up in one block.

Algorithm 1.7.6: AhoSethiUllmanPartition(Σ, Q, I, F, δ)

Split Q into blocks F and Q\F
repeat
for each block B
for each a ∈ Σ
Identify blocks B1, . . . , Bm reachable from B via a
if m > 1

for i = 1 to m

Put all q such that δ(q, a) ∈ Bi into a new block B̂i

until No more blocks can be split

The basic principle being clear, the actual challenge is to select data structures that would
allow us to implement the procedure efficiently.

The assignment of states to blocks can be represented by a vector Block[] of |Q| integers,
each one being a block ID. Since each block is a non-empty subset of Q, we can represent it
unambiguously by the smallest state index occurring in it. As a convention, we will subsript the
block symbol B with the index i = min({j : qj ∈ Bi}). For example, if {q4, q8, q11} is a block,
then it is denoted B4.

We can also assume that the state indices are the first |Q| − 1 non-negative integers: Q =

40 CHAPTER 1. FINITE-STATE AUTOMATA

{qi : i = 0, 1, . . . n − 1} for some n ∈ IN0. The initial split into blocks is done by the procedure
InitializeEqClasses() (algorithm 1.7.7).

Algorithm 1.7.7: InitializeEqClasses(Block, (Σ, Q, I, F, δ))

fin← min({i : qi ∈ F})
nonfin← min({i : qi 6∈ F})
for q ∈ F

Block[q]← Bfin

for q ∈ Q\F
Block[q]← Bnonfin

The procedure starts by determining fin and nonfin, the smallest index of a final and a non-
final state respectively. These indices are the used as identifiers of the initial two blocks: Bfin

containing all final states, and Bnonfin all non-final states. These block IDs are then assigned to
the states. The result for the DFSA in figure 1.22 in shown in the following table:

state q0 q1 q2 q3 q4 q5 q6 q7

block B0 B1 B0 B0 B1 B1 B1 B1

Table 1.4: The initial split of states into two blocks (final/non-final states) for the DFSA in figure 1.22.

The equivalence classes are B0 = Q\F = {q0, q2, q3} and B2 = F = {q1, q4, q5, q6, q7}.
In the first refinement step, we inspect transitions leaving block B0 and labeled a. We discover

that δ(q0, a) = q1 and δ(q3, a) = q4 are in block B1 while δ(q2, a) = q3 belongs to B0. Therefore,
q2 is not equivalent to any of the remaining states in B0, so we need to split block B0 into
{q0, q3} (denoted B0) and {q2} (denoted B2). The reader may repeat this procedure for the other
symbols until no changes occur and check that the resulting partition is indeed the one shown in
diagram 1.22.

The refinement of the blocks of Q is best implemented in the following way. Let a ∈ Σ be the
current alphabet symbol. For each state q in the Block[] vector, we determine δ(q, a), i.e. the
state that can be reached from q via a. If δ(q, a) is undefined, we set δ(q, a) = ⊥, where ⊥ may
be viewed as a special rejecting dead state such that δ(⊥, α) = ⊥ for all α ∈ Σ).

The values of Block[q], δ(q, a) and Block[δ(q, a)] for the first refinement step are given in the
rows 2, 3 and 4 of table 1.5.

state (q) q0 q1 q2 q3 q4 q5 q6 q7

Block[q] B0 B1 B0 B0 B1 B1 B1 B1

δ(q, a) q1 q5 q3 q4 ⊥ q5 q6 ⊥
Block[δ(q, a)] B1 B1 B0 B1 B⊥ B1 B1 B⊥

block after refinement B0 B1 B2 B0 B⊥ B1 B1 B⊥

Table 1.5: The refinement operation in the Aho-Sethi-Ullman algorithm.

As pointed out above, a block B of Q is left unchanged only if all transitions labeled a leaving
states in B lead to the same block B′. Accordingly, if the transitions point to different blocks, B
is split in order to reflect the differences. The last row in table 1.5 shows the result of such a split.

This means that each distinct pair 〈Block[q], Block[δ(q, a)]〉 identifies a separate block after
the refinement step for the current symbol. For example, in table 1.5, the pair 〈B1, B⊥〉 occurs in
the columns corresponding to the states q4 and q7, and thus stands for the block B4 = {q4, q7}.

This can be implemented efficiently by mapping each occurring pair 〈B,B′〉 from the second
and fourth row of the table to the value Map[〈B,B′〉]← qi, where qi is the first state (in ascending
order) for which the pair 〈B,B′〉 occurs in the table.

1.7. MINIMIZATION 41

The new value of Block[q] is then set to Map[〈B,B′〉], where B and B′ are the values in,
respectively, the second and the fourth row of the table for q.

The pseudocode of the refinement procedure is given below in algorithm 1.7.8. Recall that we
make the assumption that the state indices i are chosen from the set {0, 1, . . . |Q| − 1}, so we can
iterate through all qi ∈ Q for i = 0, . . . |Q| − 1.

The procedure computes the new block IDs for the states and writes them back into the vector
Block[]. The Boolean flag Changed is initially set to False. The algorithm sets it to True as soon
as the block of one of the states changes (i.e., the original block is refined). The final value of this
flag is also the return value of the function. Thus, Refine() returns True if the input partition
has actually been refined, and False if it stays unchanged.

Algorithm 1.7.8: Refine(Block, a)

Changed← False
for i← 0 to |Q| − 1

if 〈Block[qi], Block[δ(qi, a)]〉 6∈Map
Map(〈Block[qi], Block[δ(qi, a)]〉)← Bi

NewBlock ←Map(〈Block[qi], Block[δ(qi, a)]〉)
if NewBlock 6= Block[qi]

Changed← True
Block[qi]← NewBlock

return (Changed)

The pseudocode for the partitioning of Q into equivalence classes is given in algorithm 1.7.9.

Algorithm 1.7.9: AhoSethiUllmanPartition(Σ, Q, I, F, δ)

InitializeEqClasses(A,Block)
Changed ← true
while Changed = true

Changed ← false
for a ∈ Σ

if Refine(Block, a) = true
Changed ← true

The algorithm starts by calling the procedure InitializeEqClasses() (algorithm 1.7.7), which
performs the initial split of Q into two blocks: final and non-final states.

Then, the while loop performs the actual refinement of the blocks by calling Refine(Block, a)
for all symbols a ∈ Σ. The variable Changed , initialized to true before entering the loop, indicates
whether or not at least one block has been changed in the current iteration. If the value of Changed
is false after an iteration, it means that we have tried to refine the current partition using each
alphabet symbol, but failed. Thus, another execution of the loop will not change anything: the
current partition expresses the final partition, i.e. the equivalence classes with respect to the
relation ≡. Accordingly, the while loop terminates.

The space requirements of the Aho-Sethi-Ullman algorithm are linear in the size of the stateset:
if |Q| = n, then we need a vector of n integers: Block[]. In asymptotic terms, we thus need Θ(n)
memory, which is a significant improvement over the Θ(n2) table-filling algorithm.

The running time of the algorithm is bounded by O(|Σ| · |Q|2). The first (initializing) loop
obviously runs in time Θ(|Q|). The second (while) loop, in which non-equivalence information is
propagated, executes at most |Q| times. In order to see this, observe that the number of distinct
blocks must increase between subsequent executions of the loop (otherwise, the blocks are not
changed and the algorithm terminates). There cannot be more blocks than states (each state
must belong to exactly one block). Thus, at latest after |Q| − 1 iterations no more block splitting
is possible and the algorithm terminates.

42 CHAPTER 1. FINITE-STATE AUTOMATA

Each iteration of the while loop contains a loop iterating over all alphabet symbols a ∈ Σ,
which in turn calls the procedure Refine(), whose running time is O(|Q|). By multiplying the
number of executions of the two nested loops and Refine(), we indeed arrive at O(|Σ| · |Q|2), the
same as the asymptotic complexity of the table-filling algorithm. In the next section, we shall see
that we can do better than that.

Hopcroft

The Aho-Sethi-Ullman way of partitioning Q into equivalence classes improves over the table-
filling algorithm in terms of space requirements (Θ(|Q|) as opposed to Θ(|Q|2)), but the running
time of both algorithms is identical: O(|Q|2), which may be a problem for large statesets.

In order to improve on that, let us focus on the mechanism used to propagate non-equivalence
information in Q. There is some perceived inefficiency in the propagation step: in every call to
the procedure Refine() in algorithm 1.7.9, we iterate through all blocks of the DFSA although
typically only a few of them trigger the split of a block.

It turns out that a better strategy is possible. We can explicitly distinguish between two types
of blocks:

Active blocks: an active block has the potential of refining the current partition of Q by inducing
the split of one of the existing blocks.

Inactive blocks: an inactive block does not split any of the blocks in the current partition.

The idea is to keep track of which block is active and which is not, and only consider the active
blocks for propagating non-equivalence information.

This time, propagation is done in a slightly different way. We select a single block B and a
symbol a ∈ Σ, and focus on the blocks in which the incoming transitions labeled a originate. The
following figure exemplifies the two situations that may occur.

D1

B

D2

a

a

a

a

a

Here, transitions labeled a and entering block B originate in two blocks: D1 and D2. The
difference between them is as follows.

• Not all of the states in D1 are the source of a transition labeled a and entering block B.
Thus, they may not be equivalent, and D1 is split in order to reflect this difference (the split
is indicated by the dashed line). In such a situation, we say that B splits D1 by symbol a.

As in the previous algorithms, these newly split blocks may induce further block splits in
subsequent iterations.

• All transitions starting in D2 and labeled a enter B. Therefore, D2 is not split.

1.7. MINIMIZATION 43

Note that, after inspecting all blocks D for all symbols a ∈ Σ, the “splitting potential” of block
B has expired as each block D left after this step has the property that, for each s ∈ Σ, either

∀q ∈ D : δ(q, s) ∈ B

or
∀q ∈ D : δ(q, s) 6∈ B.

As a result, B can be marked as inactive.
The algorithm relies on there being an active block C inducing the split of some block B, active

or inactive, into two blocks B′ and B′′. Since the distinction between active and inactive blocks
is crucial for the algorithm, the question arises how B′ and B′′ should be marked with respect to
the active-inactive property.

B is inactive. Some of the existing blocks D for which ∀q ∈ D : δ(q, s) ∈ B (for some s ∈ Σ)
may become splittable, as illustrated by figure 1.28.

D
B

B′

B′′

a

a

a

D′

D′′

Figure 1.28: The split of block B into B′ and B′′ induces a split of block D.

Here, there is no trigger for splitting D as long as B remains in one piece. However, as
soon as B is split into B′ and B′′, D must be split into D′ and D′′ in order to reflect the
difference.

Also observe that the splitting of D is symmetric: it does not matter whether it is triggered
by B′ or B′′. As long as B does not split D by any symbol s ∈ Σ (which is guaranteed by
the fact that B has been processed previously), the split in D induced by B′ is identical
to the split in D induced by B′′ = B\B′. As a practical consequence, there is no need to
propagate non-equivalence information from both B′ and B′′. Hence, one of them needs to
be marked as active. As we shall soon see, it is preferable to activate the smaller block for
efficiency reasons.

B is active. In this case, B may have the potential to split some block D by some symbol b, as
illustrated by figure 1.29.

However, it may happen that B is split into B′ and B′′ before the pair (B, b) is due to be
considered. This split may induce a split of D into D′ and D′′, as shown in figure 1.30.

The split in D induced by splitting B into B′ and B′′ is orthogonal to the split in D that
could have been induced by B and b. As a result, B′ splits D′ (but not D′′) and B′′ splits
D′′ (but not D′). Thus, both B′ and B′′ must be marked as active on their creation.

44 CHAPTER 1. FINITE-STATE AUTOMATA

D B

b

b

b

Figure 1.29: The active block B has the potential to split block D.

D B

B′

B′′

D′

D′′

a

a

a

a

b

b

Figure 1.30: The split of an active block B into B′ and B′′ induces a split of block D into D′ and D′′.
Note that B′ splits D′ and B′′ splits D′′ by symbol b.

This strategy can be stated as the following (informal) algorithm (recall that δ−1
s (B) is the set

of all states q ∈ Q such that δ(q, s) ∈ B).

Algorithm 1.7.10: HopcroftPartition(Σ, Q, I, F, δ)

Initialize the partition with the blocks F and Q\F
Mark both initial blocks as active
while there exists an active block B

Inactivate B
for s ∈ Σ

C ← δ−1
s (B)

for each block D split by B
D′ ← D ∩ C
D′′ ← D\C
replace D by D′, D′′

if D is active
activate D′ and D′′

else
activate the smaller one of D′ and D′′

For an efficient implementation of the above algorithm, it is important that each iteration of
the main nested loop is done in time linear in |C|. In order to achieve that, we can represent each
block D as an aggregation of three data structures:

1.7. MINIMIZATION 45

• the doubly linked list Elements, in which the elements of D are stored;

• the Boolean field Active which tells whether or not the block is active;

• the auxiliary doubly linked list Intersection, which is used to store the elements of the
intersection of D and the currently processed block C.

In addition, we maintain two vectors BlockId[] and Link[], both indexed by the states q ∈ Q.
BlockId[q] is a pointer to the block q belongs to. Link[q] is a pointer to the actual entry for q in
the doubly linked list representing the block.

The following diagram shows the structure of an active block D = {q1, q4, q5, q8}.

Active = True
Elements = 〈q1, q4, q5, q8〉
Intersection = NIL

Now suppose C ∩ D = {q4, q8}. When the algorithm iterates through C, it finds both these
states and moves the corresponding list entries from Elements to Intersection, resulting in:

Active = True
Elements = 〈q1, q5〉
Intersection = 〈q4, q8〉

Note that the pointers Link[q] make it possible to move each of the the linked list entries in
constant time.

As a result, Intersection holds the intersection D∩C, while Elements holds the set difference
D\C. These two lists correspond to the values of the blocks D′ and D′′ into which D is split.
Therefore, we now create a new block and make the Intersection list of the old one the value of
its Element field. Since the states in this list are moved to a new block, we make BlockId[q] to
the new block for each of these states q. The Intersection field on both blocks is set to NIL.
Since the original block was active, both blocks are activated.

In the end, we are left with the following two structures:

Active = True
Elements = 〈q1, q5〉
Intersection = NIL

and

Active = True
Elements = 〈q4, q8〉
Intersection = NIL

The vector BlockId[] is updated accordingly.
Note that it might happen that D ∩ C = D, i.e. D\C = ∅ and D is not split. In such a case,

we end up with the following structure:

Active = True
Elements = NIL
Intersection = 〈. . .〉

In such a case, we just swap Elements and Intersection. This restores the original representation
of D (no new block is created, of course). The pseudocode of the block refinement procedure is
given below:

46 CHAPTER 1. FINITE-STATE AUTOMATA

Algorithm 1.7.11: HopcroftRefine(C)

for each q ∈ C
Move(Intersection[BlockId[q]], Link[q])

for each q ∈ C
if Intersection[BlockId[q]] 6= NIL

SplitBlock(BlockId[q])

procedure SplitBlock(D)
if Elements[D] 6= NIL

D′ ← create a new block
Elements[D′]← Intersection[D]
Intersection[D′]← NIL
Intersection[D]← NIL
for each q ∈ Elements[D′]

BlockId[q]← D′

if Active[D]
Active[D′]← true

else
if length[Elements[D′]] < length[Elements[D]]

Active[D′]← true
Active[D]← false
else

Active[D′]← false
else

Block[D]← Intersection[D]

The first for each loop moves each q ∈ C from the Elements list to the Intersection list in
the block to which q belongs.

The second for each loop accesses each of the modified blocks, checks if the intersection
contains any elements and passes such a block to the procedure SplitBlock(), which splits
it into two if required (i.e., whenever both lists Elements and Intersection are non-empty).
Note that several states q ∈ C may point to the same block D. However, after the first call
to SplitBlock(D), its intersection list is set to NIL, and therefore SplitBlock(D) is never
invoked again.

The state partitioning algorithm can now be restated more formally as follows:

Algorithm 1.7.12: HopcroftPartition(Σ, Q, I, F, δ)

Elements[Bfin]← F
Elements[Bnonfin]← Q− F
Active[Bfin]← true
Active[Bnonfin]← true
Intersection[Bfin]← NIL
Intersection[Bnonfin]← NIL
while there exists an active block B

Inactivate B
for s ∈ Σ

C ← δ−1
s (B)

HopcroftRefine(C)

The running time of the algorithm is O(|Σ|·|Q|·log|Q|). To see this, consider the following. Let
B(i) be the block considered in the i-th iteration of the while loop. Let C(i,s) denote δ−1

s (B(i)).
The running time of HopcroftRefine(C) is linear in C. The running time of the entire loop is
thus proportional to ΣK

i=1Σs∈Σ|C(i,s)|, where K is the total number of iterations. But:

1.7. MINIMIZATION 47

ΣK
i=1Σs∈Σ|C(i,s)| ≤ ΣK

i=1Σq∈B(i)Σs∈Σ|δ−1
s (q)| = ΣK

i=1|B(i)| · |Σ| · |Q|
≤ Σq∈Qf(q) · |Σ| · |Q| (1.6)

where f(q) is the number of times state q appears in the current block B(i).
On the other hand, we can derive a bound on f(q) in the following way. The first time Block[q]

is selected in the while loop, the size of Block[q] is bounded by the size of Q only. Then, Block[q]
is deactivated and remains so until it is split. After the split, the new Block[q] can only be
active if it is the smaller of the two new blocks created by splitting the old value. This means
that |Block[q]| < |Q|

2 . Accordingly, every time Block[q] is selected in the while loop, its size is
halved. As a result, after being selected log|Q| times at latest, Block[q] becomes a singleton set:
Block[q] = {q}.

If such a singleton is still active, it may be selected at most once. Then it is inactivated
and cannot be re-activated anymore because activation only happens when a block is split, and
singleton blocks are unsplittable. Thus, f(q) ≤ log|Q|+ 1. Together with (1.6), this yields:

ΣK
i=1Σs∈ΣC(i,s) ≤ (log|Q|+ 1) · |Σ| · |Q|

Thus, the running time of Hopcroft’s algorithm is O(|Σ| · |Q| · log|Q|). This is the best known
DFSA minimization algorithm for the general case.

1.7.2 Brzozowski’s Algorithm

All the minimization algorithms presented so far are based on partitioning the stateset of a DFSA
into equivalence classes with respect to the state equivalence relation ≡. The last algorithm to be
presented in this section works differently.

Its application is very simple. Given a DFSA A = (Σ, Q, q0, F, δ), the algorithm consists of
four consecutive steps: reversal, determinization, another reversal, and another determinization.

• First, A is reversed, creating a non-deterministic automaton A−1 = (Σ, Q, F, {q0}, δ−1).
Note that F is the set of initial states of A−1, while q0 is its only final state. The transition
function δ−1 is defined as δ−1(q, a) = {q′ ∈ Q : δ(q, a) = q′}.
Note that L(A−1) = L(A)−1: A−1 accepts the strings accepted by A, but in reverse order.
For example, if A accepts aaabb, then A−1 accepts bbaaa.

• The reversed automaton A−1 is determinized, creating a new DFSA Det(A−1). Obviously,
L(Det(A−1)) = L(A−1) = L(A)−1.

• Det(A−1) is reversed, which creates another NFSA Det(A−1)−1. The language accepted by
the NFSA is the reverse of L(Det(A−1)) = L(A)−1: L(Det(A−1)−1) = (L(A)−1)−1 = L(A).
I.e., the NFSA is equivalent to the original automaton A.

• The NFSA Det(A−1)−1 is determinized, creating a DFSA Det(Det(A−1)−1). Obviously,
L(Det(Det(A−1)−1)) = L(A).

In order to see that the result is minimal, consider the right languages of two states q, q′ in
the NFSA Det(A−1)−1 created in the third step by reversing the DFSA Det(A−1). It is easy to
observe that

−→
L (q) ∩

−→
L (q′) = ∅ if q 6= q′. Otherwise, there would be a string w ∈ Σ∗ such that

w ∈
−→
L (q) and w ∈

−→
L (q′). But then w would lead to two distinct states in Det(A−1) (starting in

the initial state of Det(A−1)), which would contradict the determinicity of Det(A−1).
The subset construction algorithm used to build the final result Det(Det(A−1)−1) creates states

that are subsets of the stateset of the NFSA Det(A−1)−1. Consider two states q̂ = {q1, . . . qk} and
r̂ = {r1 . . . rl}. Obviously,

−→
L (q̂) =

−→
L (q1)∪ . . .∪

−→
L (qk) and

−→
L (r̂) =

−→
L (r1)∪ . . .∪

−→
L (rl). According

to the property stated in the previous paragraph, the languages
−→
L (q1), . . . ,

−→
L (qk),

−→
L (r1), . . . ,

−→
L (rl)

48 CHAPTER 1. FINITE-STATE AUTOMATA

are pairwise disjoint with the exception of pairs
−→
L (qi),

−→
L (rj) such that qi = rj for some i, j. Thus,

−→
L (q̂) =

−→
L (r̂) if and only if k = l and each qi is identical to some rj . But this is equivalent to

{q1, . . . , qk} = {r1, . . . , rl}, i.e. q̂ = r̂. Formally:

−→
L (q̂) =

−→
L (r̂) ⇐⇒ q̂ = r̂.

According to the criterion stated in proposition 1, this proves that the DFSA is minimal.

1.7.3 Comparison of Minimization Algorithms

Table 1.6 compares the running time and the memory requirements of the minimization algorithms
introduced in this chapter. The size of the alphabet (|Σ|), which is a constant factor in all the
complexity bounds derived so far, is omitted for better readability, leaving the size of the stateset
(|Q|) as the only parameter.

Method running time space requirements
Hopcroft & Ullman Θ(|Q|2) Θ(|Q|2)

Aho, Sethi & Ullman O(|Q|2) Θ(|Q|)
Hopcroft O(|Q| · lg|Q|) Θ(|Q|)

Brzozowski O(2|Q|) O(2|Q|)

Table 1.6: Comparison of different minimization algorithms.

Hopcroft’s method is clearly the winner in both categories: its memory requirements are linear
in |Q|, while the running time is O(|Q| · lg|Q|). As a result, the algorithm outperforms the O(|Q|2),
especially for large statests. If |Q| = 1024, then |Q|2 = 1048576, while |Q| · lg|Q| = 10240.

Out of the two algorithms with quadratic time complexity, the Aho-Sethi-Ullman method has
the better space behavior (linear in |Q|). The Θ(|Q|2) memory requirements of the Hopcroft
& Ullman’s table-filling algorithm make it very hard to apply in practice. Also note that the
quadratic bound on its running time is not just a worst-case situation. The table-filling algorithm
does have to iterate through all state pairs, while the Aho-Sethi-Ullman method might actually
terminate before the bound is reached.

As for Brzozowski’s algorithm, its O(2|Q|) complexity seems to make it a bad choice. However,
its actual performance depends strongly on the structure of the automaton being minimized. In
many cases, the observed running time is not worse than that of the other algorithms.

The Hopcroft algorithm is the fastest known minimization procedure for general DFSAs. Faster
algorithms exist only for specialized types of automata, such as acyclic ones (i.e. automata that
do not contain loops). Such automata are often used to encode dictionaries. Therefore, this topic
is treated more extensively in the applications chapter, in section 3.3.

1.8 Further Reading

Finite-state automata are one of the best-investigated areas of automata theory. Their practical
applications in Computer Science range from compiler design to pattern matching. Out of the vast
literature on this subject, Hopcroft, Motwani and Ullman (2001) provide a well-written and easy
to read introduction to formal language and automata theory. Finite-state automata are covered
in somewhat less detail than in our book. Applications to compiler design, such as building
scanners, are handled extensively by Aho, Sethi and Ullman (1988). Aho, Hopcroft and Ullman
(1974) address several aspects of finite-state machines from an algorithmic point of view.

As for NLP-oriented literature, we highly recommend the introductory chapter of the collection
published by Roche and Schabes (1997), which covers both automata and transducers, as well as
further related notions such as bimachines.

Chapter 2

Regular Expressions

In this chapter, we look at finite-state automata from a different perspective: we show how regular
expressions, defined in the sections 2.1 and 2.2, can be viewed as a convenient notation for FSAs.
Section 2.3 deals with the actual compilation of regular expressions into FSAs. This leads to the
notion of a regular language (section 2.4), defined as the set of all strings accepted by a particular
automaton. In the remainder of the chapter, we show how to implement a number of operations
on regular languages in a finite-state framework.

2.1 Regular Expressions and Finite-State Automata

Designing automata by hand is a tedious and very error-prone task. Therefore, it is almost never
done in practice. In order to make their design more user-friendly, we need an intuitive formal
language for the specification of automata. Regular expressions, for short regexps, familiar from
Perl or Unix commands such as grep or sed, are such a language.

Consider the following example. You have seen a positive review of a book, and want to buy it.
You can look for it in a large text database but, unfortunately, you do not remember the author’s
name. The only thing you do remember is that it starts with either Bo or Pa and ends in son.

The best solution would be to formulate a regular expression subsuming all strings satisfying
these criteria, e.g. (Bo|Pa)[a-z]*son. This expression consists of three parts:

(Bo|Pa) stands for either Bo or Pa. The brackets are just a grouping operator.

[a-z]* stands for a possibly empty sequence of characters from the range a to z (* denotes an
arbitrary number of repetitions of the preceding expression, including the empty string).

son matches the string son.

It turns out that we can use this regular expression as an instruction to build a non-deterministic
finite-state automaton. We do it step-by-step, beginning with the automaton depicted in figure 2.1.

q0

q1

q2

q3

B

P

o

a

Figure 2.1: FSA corresponding to the sub-expression (Bo|Pa)

49

50 CHAPTER 2. REGULAR EXPRESSIONS

Starting in the initial state q0, the automaton may consume either Bo (via the states q1 and
q3) or Pa (via q2 and q3). In both cases, it ends up in state q3, which is where the processing of
the next part of the string (to be matched against [a-z]*) should start.

The subexpression [a-z]* can be accounted for by adding a loop accepting any lower-case
ASCII character in state q3, as shown in figure 2.2. Note that after consuming the prefix of the
string corresponding to the sub-expression (Bo|Pa)[a-z]*, the automaton is still in state q3.

q0

q1

q2

q3

B

P

o

a

[a-z]

Figure 2.2: FSA corresponding to the sub-expression (Bo|Pa)[a-z]*

Finally, we can make the automaton accept the remaining suffix son by adding a chain of three
states (q4, q5, q6) and connecting them with transitions starting at q3, as shown in figure 2.3. The
state q6 is made final in order for all strings matching the regular expression to be accepted.

q0

q1

q2

q3 q4 q5 q6

B

P

o

a

[a-z]

s o n

Figure 2.3: FSA corresponding to the sub-expression (Bo|Pa)[a-z]*

This rather informal example illustrates a profound fact about the relationship between reg-
ular expressions and finite-state automata: they are equivalent. Every regular expression can be
compiled into an FSA; for every FSA, there is a regular expression matching exactly the strings
accepted by this automaton. The example also shows how to perform such compilation by dividing
the regular expression into simpler subexpressions, turning them into FSAs and then joining these
FSAs to produce an automaton for the top-level expression.

The remainder of this chapter describes the syntax and semantics of regular expressions (sec-
tion 2.2), a method for their compilation into FSAs (section 2.3), and some properties of regular
languages — the class of formal languages denoted by regular expressions/accepted by FSAs (sec-
tion 2.4).

2.2 Syntax of Regular Expressions

The regular expression (Pa|Bo)[a-z]*son considered in the previous section contains the alphabet
symbols B, P, a, n, o, s, z together with the special characters |, *, (,), [,] and -, which do

2.2. SYNTAX OF REGULAR EXPRESSIONS 51

not belong to the alphabet. These special characters are a notation for regular operators, which
combine alphabet symbols into more complex structures.

In this sense, the regular operators perform the same function as the arithmetic operators +,
−, · and :, which join numbers into arithmetic expressions such as 4+9, 5 · 4+88 or 4 · 77− 89 : 3.

In order to describe a system of operators, one needs to come up with rules specifying a) the
legal combinations of operators and alphabet symbols (syntax) and b) what these combinations
actually mean (semantics). In the case of arithmetics, the syntax states that 4 · 6 + 7 is a well-
formed arithmetic expression while +8− 9· is not. The semantics states that the number 31 is the
value (=meaning) of 4 · 6 + 7.

The same is needed for regular expressions. Their syntax can be described in terms similar to
the syntax of arithmetic expressions. As for their semantics, it is most convenient and intuitive
to formulate it by specifying what strings match a particular regexp.

The possible combinations of alphabet symbols and regular operators are defined recursively
by the following set of rules. At the semantic level, the rules specify the conditions under which
strings match a particular class of regexps.

Definition 12 (Regular expressions)
Let Σ be an alphabet. Then the set of regular expressions over Σ is defined as follows:

Atomic regular expressions: Each a ∈ Σ∪{ε} is a regular expression matching only itself, i.e.
the string a.

Concatenation: If R1 and R2 are regular expressions, then R1R2 is a regular expression. R1R2

matches a string w iff R1 matches a prefix v of w and R2 matches the remainder of w.

Disjunction: If R1 and R2 are regular expressions, then R1|R2 is a regular expression. R1|R2

matches a string w iff either R1 or R2 matches w.

Reflexive-transitive closure (Kleene star): If R is a regular expression, then so is R∗. R∗

matches the empty string and any string w that can be split into n substrings w1, . . . , wn

such that each wi matches R.

Bracketing: If R is a regular expression, then so is (R). (R) matches a string w if and only if
R matches w.

The reader may have realized that some familiar concepts are missing from this definition. For
instance, the range construct [a-z] used in the first section of this chapter is not accounted
for. It turns out that this and other regular operators are just variants of the above operators
introduced for notational convenience. Thus, the range [a-z] is nothing else than a disjunction
of all the symbols from a to z, and can be written a|b|c|...|z. This and other extensions are
discussed in section 2.2.1; for now, we will just stick to the four basic regular operators introduced
in definition 12.

In addition to the above recursive definition, we need to define operator precedence rules. Again,
analogy with arithmetic operators is helpful: the expression 3+4 ·5 = 23 is evaluated as 3+(4 ·5)
rather than (3 + 4) · 5 because · has precedence over +. For regular operators, we assume that
the reflexive-transitive closure (*) has the highest precedence, followed by concatenation (·) and
disjunction (|). Thus, ab|c* is assumed to have the structure (ab)|(c*). Whenever the default
structure defined by operator precedence needs to be overridden, we use brackets: (a(b|c)*).

In order to make regexp derivations completely unambiguous, we assume both binary operators
(disjunction and concatenation) to be right-associative, which means that a|b|c is assumed to have
the derivation a|(b|c) rather than (a|b)|c.1 With this assumption and the order of precedence
for the regular operators, each regular expression has a unique derivation.

1This assumption is not required from the semantic point of view because a|(b|c) is equivalent to (a|b)|c and
a(bc) is equivalent to a(bc).

52 CHAPTER 2. REGULAR EXPRESSIONS

2.2.1 Extensions

This basic definition of regular expressions is typically extended by means of further regular
operators such as:

Range of symbols: The range notation, e.g. [abc] or [A−Z], is just a shorthand for a disjunction
of atomic symbols (a|b|c and A|B|C| . . . |Z, respectively).

Transitive closure: If R is a regular expression, then so is R+, which is an abbreviation for
RR∗.

Wildcard: The symbol . is a regular expression matching each symbol a ∈ Σ. It is equivalent to
the disjunction of all alphabet symbols. For instance, if Σ is the set of all lower-case ASCII
characters, then . is equivalent to a|b| . . . |z.

Note that the extensions are defined in terms of the basic syntax described by the above rules.
Thus, they can be treated just as syntactic sugar; for all purposes, it is sufficient to consider the
basic syntax introduced in definition 12.

2.3 Compilation of Regular Expressions into FSAs

In section 2.1 we saw how an equivalent FSA can be built for a given regular expression. The
technique employed was a good example of what is called a divide-and-conquer strategy. The
regexp (Bo|Pa)[a-z]*son was split into substructures (“divide”), each of which was transformed
into an automaton (“conquer”). In the final step, the automata were combined, yielding an FSA
equivalent to the regular expression.

In this section, we will show how to generalize this informal example in order to produce a
generic recursive compilation technique. The divide step will recursively follow the derivation of
the regular expression, down to the atomic regular expressions at the leaves of the derivation. For
each regular operator, the strategy is first to identify its operands, then compile them into FSAs,
and finally combine the resulting automata according to the semantics of the respective rule in
definition 12.

For uniformity, it is assumed that a regular expression is compiled into an ε-NFSA with exactly
one initial state qin and exactly one final state qout. We formulate a separate compilation method
for each of the rules stated in definition 12, starting with the simple case of atomic regexps.

2.3.1 Atomic Regular Expressions

An ε-NFSA corresponding to the atomic regexp a must accept exactly one string, namely a itself.
The construction of such an automaton is trivial:

qin qouta

Figure 2.4: NFSA for the regular expression a.

Also trivial is the NFSA for the empty regexp ε:

2.3. COMPILATION OF REGULAR EXPRESSIONS INTO FSAS 53

qin qoutε

Figure 2.5: NFSA for the empty regular expression.

2.3.2 Complex Regular Expressions

A complex regular expression is a regular operator together with its operand(s). According to
our divide-and-conquer strategy, we can assume that the operands, which are less complex regular
expressions, have already been compiled into FSAs. The remaining task is to combine these FSAs
into an automaton equivalent to the top-level expression.

Disjunction

The disjunction rule states that R1|R2 matches a string w if and only if at least one of the operands
matches w. If A1, A2 are NFSAs equivalent to R1 and R2, respectively, then the automaton for
R1|R2 shall accept a string w if and only if w is accepted by either A1 or A2. Such an automaton
can be created out of A1 and A2 by adding a new initial state qin and a new final state qout, and
introducing four ε-transitions: two linking qin with the initial states of A1 and A2, and two linking
the final states of either automaton to qout. Figure 2.6 illustrates this construction.

qin qout

qin
1 qout

1

qin
2 qout

2

ε ε

ε ε

A1

A2

Figure 2.6: Construction of an NFSA for a disjunctive regular expression R1|R2. A1 and A2 are NFSAs
equivalent to the respective operands.

Note that qin
1 and qout

2 are no longer initial. Likewise, qout
1 and qout

2 are no longer final.

Concatenation

According to definition 12, a concatenation R1R2 matches a string w if and only if R1 matches
a prefix of w and R2 the remainder of w. If A1 and A2 are NFSAs equivalent to R1 and R2,
respectively, then the desired functionality is nothing else than first running A1 on w and stopping
in the final state qout

1 after accepting some prefix of w, and then running A2 on the remainder and
stopping in the final state qout

2 of A2.
This functionality is implemented by linking qout

1 to qin
2 with an ε-transition. Obviously, qout

1 is
no longer a final state after this operation; qin

2 is no longer initial. Figure 2.7 illustrates the idea.

54 CHAPTER 2. REGULAR EXPRESSIONS

qin
1 qout

1 qin
2 qout

2

εA1 A2

Figure 2.7: Construction of an NFSA for a regular expression of the form R1R2 (concatenation). A1 and
A2 are NFSAs equivalent to the respective operands.

Reflexive-Transitive Closure

A string w matches a regular expression of the form R∗1 if and only if w = ε or w = w1 · . . . wn,
where each wi is a string that matches the operand R1. Assume that A1 is the NFSA resulting
from the compilation of R1, having exactly one initial state qin

1 and exactly one final state qout
1 .

We introduce a new initial state qin and a new final one qout. Since ε matches R∗1, the two
states are connected with an ε-transition.

For strings w 6= ε, the matching of w against R∗1 can be implemented by successively accepting
portions of w using automaton A1: we start in state qin

1 , consume w1 and end up in state qout
1 ,

from where we jump to state qin
1 and accept w2, etc. The move from qout

1 to qin
1 after accepting

wi can be modeled by an ε-transition connecting the two states. Since qin and qout are the new
initial and final state, we connect them to the original automaton A1 by ε-transitions: one from
qin to qin

1 and one from qout
1 to qout. The result is shown in figure 2.8.

qin qoutqin
1 qout

1

ε ε

ε

ε

A1

Figure 2.8: Construction of an NFSA for a regular expression of the form R∗
1 (reflexive-transitive closure).

A1 is an NFSA equivalent to the operand R1.

Bracketing

This last case is trivial. A bracketed regular expression (R) matches exactly the same strings as
the operand regexp R. Therefore, if A is an NFSA equivalent to R, then A is also equivalent to
(R).

2.4 Regular Languages

So far, the semantics of regular expressions has been described in terms of strings matching a
regular pattern. This formulation is quite intutitive, especially for those readers who are familiar

2.4. REGULAR LANGUAGES 55

with the regular expressions used in grep or awk. In section 2.3, this “matching semantics” was
directly translated into the operational semantics of the FSAs built in the process of compiling a
regexp into an automaton.

However, in order to be mathematically precise, we need to give regular expressions a deno-
tational semantics, i.e. interpret each regexp by identifying some object or collection of objects
as its meaning. Returning to the analogy to arithmetic operators, we can see that arithmetic
expressions are interpreted as numbers: e.g. 14 is the meaning of 3 · 4 + 2. Now we need to find
an analogous denotate for regular expressions.

It turns out that this is possible if a regular expression is viewed as a finite way of describing
the (potentially infinite) set of strings it matches. For example, a* is a finite notation for the set
of all sequences of a’s, including the empty one: {ε, a, aa, aaa, . . .}. Thus, we can say that every
regular expression denotes a language: namely the language of all strings that match this regular
expression. Languages denoted by regular expressions are called regular languages.

The equivalence of regular expressions and finite-state automata means that:

• for each regular expression R there exists an FSA A accepting the language denoted (“matched”)
by R;

• conversely, for every FSA A, there is a regular expression denoting the language accepted
by A.

Figure 2.9 illustrates the relationship between regular expressions, finite-state automata and reg-
ular languages.

ab* ≡

a
ababb

abbb
abbbb
...

a

b

denotes accepts

Figure 2.9: The regular expression ab*, the equivalent FSA, and the regular language they denote/accept.

Regular languages can be defined — as they were above — indirectly: either as languages de-
noted by regular expressions, or languages accepted by FSAs. However, an explicit set-theoretical
formulation is possible, and often beneficial. It is a recursive definition that parallels the definition
of regular expressions with the only difference that it deals with regular operators operating on
languages (sets of strings) rather than regular expressions.

The set-theoretical notation for the regular operators is slightly different from the notation
used for regular expressions in that the counterpart of disjunction (R1|R2) is called union and
denoted L1 ∪ L2. For concatenation and the reflexive-transitive closure, the symbols · and * are

56 CHAPTER 2. REGULAR EXPRESSIONS

used, respectively. Bracketing, which is a purely notational concept, does not have a set-theoretical
counterpart.

The formal definition of the three operators is given below.

Union: the union L1 ∪ L2 of two languages L1 and L2 is defined as the union of the two sets
L1 and L2. For example, if L1 = {a, aba, aaac} and L2 = {bcb, cc}, then L1 ∪ L2 =
{a, aba, aaac, bcb, cc}.

Concatenation: the concatenation L1 · L2 of two languages L1 and L2 is defined as L1 · L2 =
{u · v : u ∈ L1, v ∈ L2}. In other words, it is the set of all strings that can be created by
concatenating a string from language L1 with a string from language L2. If L1 and L2 are
as in the example above, then

L1 · L2 = {abcb, ababcb, aaacbcb, acc, abacc, aaaccc}.

Reflexive-transitive closure: If L is a language, then its reflexive-transitive closure L∗ is the
set of all strings formed by concatenating any finite number (including 0) of strings in L:

L∗ = {w1 · . . . · wn : n ∈ N}

For example, if L = {a, b}, then any finite sequence of a’s and b’s is in the language L∗.

Regular languages can now be formally defined as follows.

Definition 13 (Regular languages) Let Σ be a finite alphabet. Then

1. {ε} is a regular language,

2. for any a ∈ Σ, {a} is a regular language,

3. if L1 and L2 are regular languages, then L1 ∪ L2 is a regular language;

4. if L1 and L2 are regular languages, then L1 · L2 is a regular language;

5. if L is a regular language, then L∗ is a regular language;

6. nothing else is a regular language.

The set-theoretical perspective on regular languages makes it easy to solve a number of prob-
lems. In the remainder of this section, we will focus on one specific class of problems, called closure
properties. The idea is to determine if a set-theoretical operation such as union, intersection or
complement produces a regular language when applied to sets that are regular languages. If this
is always the case, then we say that regular languages are closed under this particular opera-
tion. For instance, it follows directly from definition 13 that regular languages are closed under
union (point 3), concatenation (point 4) and the reflexive-transitive closure (point 5). For other
set-theoretical operators, things are more tricky.

In the following, we assume that all the languages considered are defined over the same alpha-
bet Σ.

2.4.1 Complement

The complement of a regular language L is denoted L̄ and defined as the set of all strings Σ not
in L:

L̄ = {w ∈ Σ∗ : w 6∈ L}

2.4. REGULAR LANGUAGES 57

In order to show that L̄ is regular, we will construct an FSA that accepts L̄. Due to the
equivalence of regular languages and FSAs, this construction is sufficient to prove that regular
languages are closed under complement.

Let A = (Σ, Q, q0, F, δ) be a DFSA accepting L. Unlike the majority of algorithms in this book,
we assume that the transition function δ is total, i.e., for each state q ∈ Q and symbol a ∈ Σ, there
is a transition labeled a leaving state q (cf. the discussion of complete and incomplete automata in
section 1.2). As demonstrated on page 8, a partial transition function can easily be made total by
adding a new non-final dead state qdead, setting δ(q, a) = qdead for all q ∈ Q and a ∈ Σ for which
δ(q, a) was initially undefined (including δ(qdead, a) = qdead for all a ∈ Σ). Figure 2.10 illustrates
this construction.

q0 q1

q2 qdead
b

a

a,b

b

a b

a

Figure 2.10: A partial FSA transition function (visualized as black arcs) is made a total function by
introducing a non-final dead state (qdead) and making all originally undefined transitions (grey arcs) point
to qdead. Once in state qdead the automaton loops in that state whatever symbol is read.

With this additional assumption, δ(q0, w) is defined for all w ∈ Σ∗, and we can distinguish two
cases:

• if w ∈ L, then δ(q0, w) ∈ F ;

• if w 6∈ L, then δ(q0, w) 6∈ F .

Since we want to build an automaton that accepts strings w 6∈ L and rejects w ∈ L, we can keep
the transitions and states of A, but swap the final and non-final states, creating an automaton
Ā = (Σ, Q, q0, Q\F, δ). Obviously, L(Ā) = L̄. This proves that regular languages are closed under
complementation.

The above proof is constructive: it not only shows that an automaton for L̄ exists, but also
demonstrates how such an automaton can be constructed.

It is worth stressing that the input to this construction must be a deterministic automaton. As
a result, if we want to determine the complement of a regular expression according to the above
construction, an extra determinization step is required (recall that the regexp compilation method
outlined in section 2.3 produces non-deterministic automata). Since the worst-case running time
of the subset construction algorithm used for determinization is exponential, the computation of
the complement of a regular language may be expensive. For this reason, unrestricted complement
is often not supported by regular expression libraries and tools.

A restricted version of the complement is the negated set of characters, e.g. [^a-c], which is
easily compiled into the disjunction of all characters not in the set.

58 CHAPTER 2. REGULAR EXPRESSIONS

2.4.2 Intersection

The intersection of two regular languages L1 and L2 is denoted L1 ∩ L2 and defined as the set of
all strings w ∈ Σ∗ such that w is in both L1 and L2:

L1 ∩ L2 = {w ∈ Σ∗ : w ∈ L1 and w ∈ L2}

In order to check if the language L1 ∩ L2 is regular, consider its complement L1 ∩ L2. If we
can prove that L1 ∩ L2 is regular, then so is L1 ∩ L2 = L1 ∩ L2, because A = A for any set A.

Furthermore, we can use an identity called De Morgan’s Law and stating that A ∩B = A ∪B
for arbitrary sets A and B.

L1 ∩ L2 = L1 ∪ L2

Now, since both L1 and L2 are regular, so are their complements L1 and L2. Hence, L1 ∩ L2,
being the union of two regular languages, is regular, too, and so is its complement L1 ∩ L2 =
L1 ∩ L2. Thus, regular languages are closed under complementation.

Construction of an Intersection Automaton

As in the case of complementation, the proof that regular languages are closed under intersection
is constructive, i.e. it defines an algorithm for the computation of an automaton that accepts
the intersection of two regular expressions R1 and R2. For this, the regular expressions need to
be compiled into two FSAs A1 and A2. Then we create the complement automata Ā1 and Ā2

and construct their union. The complement of the union automaton is a DFSA that accepts
L(R1) ∩ L(R2).

This construction involves three computations of a complement FSA, which — as mentioned
above in section 2.4.2 — may be expensive. It turns out that we can do much better.

Recall that a string w ∈ Σ∗ is in the intersection language if and only if it is accepted by both
automata. The trick is thus to construct an NFSA A = (Σ, Q, I, F,∆) that emulates the parallel
application of both automata to w.

For this, let us assume that the states of A are actually pairs of states: one being the state of
A1 and the other one the state of A2 for a particular configuration of both automata. In other
words, if A1 is in state q1 and A2 in state q2 after consuming some string w, we say that A is in
state 〈q1, q2〉.

Obviously, we call such a pair initial if both q1 and q2 are initial (in the respective automata,
i.e. q1 ∈ I1 and q2 ∈ I2). Also, 〈q1, q2〉 is called final if both q1 and q2 are final.

As for the transition function ∆, observe that A moving from 〈q1, q2〉 to 〈r1, r2〉 via some
symbol a is the same as A1 moving from q1 to r1 (i.e. r1 ∈ ∆1(q1, a)) and A2 moving from q2 to
r2 (i.e. r2 ∈ ∆2(q2, a)) via a. Therefore, the set of transitions labeled a and leaving 〈q1, q2〉 must
be identical to the set of all such pairs 〈r1, r2〉.

Formally, the intersection automaton A = (Σ, Q, I, F,∆) is defined as follows.

Q = {〈q1, q2〉 ∈ Q1 ×Q2 : q1 ∈ ∆∗1(I1, w), q2 ∈ ∆∗2(I2, w) for some w ∈ Σ∗}.

I = I1 × I2.

F = Q ∩ (F1 × F2).

∆(〈q1, q2〉, a) = ∆1(q1, a)×∆2(q2, a).

The definition of the stateset makes sure that only pairs 〈q1, q2〉 reachable from I via a string
w ∈ Σ∗ are in Q. The actual construction parallels the algorithms 1.4.1 (subset construction)
and 1.6.1 (equivalence of automata). Starting in pairs of initial states, all paths through A1 and
A2 are explored using a queue of state pairs (which become states of A). If 〈q1, q2〉 is the pair at the

2.4. REGULAR LANGUAGES 59

front of the queue, the algorithm sets ∆(〈q1, q2〉, a) = ∆1(q1, a)×∆2(q2, a). If ∆1(q1, a)×∆2(q2, a)
contains any new pairs 〈r1, r2〉, these pairs are enqueued in order to be explored later.

Algorithm 2.4.1: Intersect((Σ, Q1, I1, F1,∆1), (Σ, Q2, I2, F2,∆2))

I ← ∅
F ← ∅
∆← ∅
for each q1 ∈ I1

for each q2 ∈ I2

I ← I ∪ {〈q1, q2〉}
Enqueue(Queue, 〈q1, q2〉)

Q← I
while Queue 6= ∅
〈q1, q2〉 ← Dequeue(Queue)
for a ∈ Σ

∆(〈q1, q2〉, a)← ∅
for each r1 ∈ ∆1(q1, a)
for each r2 ∈ ∆2(q2, a)
∆(〈q1, q2〉, a)← ∆(〈q1, q2〉, a) ∪ {〈r1, r2〉}
if 〈r1, r2〉 6∈ Q

Q← Q ∪ {〈r1, r2〉}
Enqueue(Queue, 〈r1, r2〉)
if r1 ∈ F1 ∧ r2 ∈ F2

F ← F ∪ {〈r1, r2〉}
return (A)

The total number of possible state pairs 〈q1, q2〉 is |Q1×Q2| = |Q1|·|Q2|. The fact that only new
pairs are enqueued makes sure that each of these pairs is processed at most once, which involves
iterating through all transition pairs 〈q1, a, r1〉, 〈q2, a, r2〉 leaving q1 and q2 respectively. This
happens in the two nested for each loops; the number of transitions considered for each automaton
is bounded by |∆1| and |∆2|, respectively. The running time of the intersection algorithm is thus
O(|Q1| · |Q2| · |∆1| · |∆2|).

2.4.3 Difference

The difference of two regular languages L1 and L2 is denoted L1\L2 and defined as the set of all
strings in L1 that are not in L2:

L1\L2 = {w ∈ Σ∗ : w ∈ L1 and w 6∈ L2}

But L1\L2 is the same as L1 ∩L2. Since regular languages are closed under complementation
and intersection, this means that L1\L2 is regular. Hence, regular languages are closed under set
difference.

2.4.4 Reversal

The reversal L−1 of a language L is defined as the set of all strings created by reversing a string
w ∈ L:

L−1 = {w−1 : w ∈ L}

For example, {ε, ab, babb}−1 = {ε, ba, bbab}.
If L is regular, then so is L−1. An acceptor for L−1 can be constructed from an acceptor

A = (Σ, Q, I, F,∆) for L by swapping the initial and the final states and reversing the transitions of

60 CHAPTER 2. REGULAR EXPRESSIONS

A. The reversed automaton is denoted A−1 and defined formally as A−1 = (Σ, Q, F, I,∆R), where
∆R = {〈q, a, r〉 : 〈r, a, q〉 ∈ ∆}. The implementation of the reversal of a DFSA is straightforward.
The complexity of this operation is Θ(|Q|+ |∆|).

If R is a regular expression, then R−1 is a regular expression denoting the language L(R)−1.

2.5 Further Reading

As already mentioned above, regular expressions are an extremely well-investigated building block
of the Unix operating system. There exists vast literature on regexp compilation, and the reader
should bear in mind that the only very basic examples are treated in the present chapter.

The compilation method (called Thompson’s algorithm) presented in section 2.3 is not the only
one available, but has the advantage of simplicity. A more complex compilation method is the
Glushkov or McNaughton-Yamada algorithm (Glushkov 1961, McNaughton and Yamada 1960). It
creates automata without ε-transitions.

One of the main difficulties faced by the regular compilers employed by interpreted program-
ming languages such as Perl or Awk is the need for fast construction of an automaton for a given
regexp. The näıve way would be first to compile the regexp into an NFSA, and then apply the
subset construction algorithm in order to create a DFSA. Due to the exponential complexity of the
subset construction algorithm, this may lead to very slow — in fact, unacceptable — compilation.
Thus, regular expressions are often only compiled into a non-deterministic automaton, or a lazy
or on-the-fly determinization algorithm is employed which does not expand the whole DFSA at
once.

In NLP applications, the requirements are often very different. The regular expressions (e.g.,
as part of a grammar) are typically available off-line and can be precompiled into a minimal
deterministic FSA. Hence, the compilation efficiency issue does not arise to the same extent.

On the other hand, if the regexps are available off-line, then using libraries optimized for
on-line construction and compilation may introduce inefficiencies due to non-determinism or de-
terminization performed at runtime. As a result, built-in regular compilers in Perl or in the Unix
environment are hardly the most efficient option for many NLP applications. In such a situation,
it is advisable to use a dedicated finite-state library in order to perform the expensive operations
off-line.

Chapter 3

Applications of Finite-State
Automata

This chapter introduces the reader to several generic finite-state programming techniques. Based
on problems often arising in NLP practice, we show how they can be solved efficiently using
finite-state automata. The applications considered comprise tokenization (section 3.1), pattern
matching (section 3.2) and the construction and encoding of dictionaries (section 3.3).

3.1 Tokenization

Text processing applications often start with tokenization, i.e. a segmentation of the input string
into words, spaces, digits, punctuation marks, etc. The segments produced in this step are called
tokens and typically carry information about the token class they belong to. Based on this in-
formation, tokens may be processed differently. For instance, all a spell checker looks up in a
dictionary is words; spaces or punctuation marks are ignored.

The following figure shows a possible simple tokenization of the sentence They were fined $100.
into five classes of tokens: word (any sequence of alphabetic characters), space (any sequence
of whitespace characters), number (any sequence of digits), punct(uation) (a single punctuation
character) and symbol (any other symbol, e.g. $, %, etc.).

They were fined $ 100 .
word space word space word space symbol number punct

It is easy to construct a deterministic FSA encoding these basic token classes (figure 3.1).
The automaton consists of six states: the initial state q0 and one state per token class. On

seeing a character, the automaton jumps to the state corresponding to the class of the token being
processed. For example, the first character of the sentence (‘T’) is recognized as the start of a word
token, hence the automaton jumps to state qword . There it stays, accepting as many alphabetic
characters as possible, i.e. the remainder of the first token They.

After scanning the y, the automaton discovers a space for which there is no transition in state
qword . This means the end of the current token. Therefore, They is returned as the first token and
classified as a word. The automaton goes back to the initial state and starts the recognition of the
next token at the space character following They. The space is consumed, leading the automaton
to state qspace . Accordingly, a space token is returned. This procedure is repeated until the whole
string is consumed.

Two things are noteworthy here. Firstly, the final states are given a semantics: the state the
DFSA ends up in determines the token class. Secondly, the input string is not accepted in one go,
as in the examples in the preceding sections, but portionwise. Each time, the algorithm pursues
a longest match strategy: once in a final state such as qword , the automaton accepts as many

61

62 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

q0

qword

qsymbol

qnumber

qpunct

qspace

[[:alpha:]]

[[:symbol:]]

[[:digits:]]

[[:punct:]]

[[:space:]]

[[:alpha:]] [[:space:]][[:digit:]]

Figure 3.1: A basic tokenizer DFSA.

characters as possible. This is made possible by the loops in states qword , qspace and qnumber .
The remaining final states do not contain such loops, hence the corresponding tokens (punct and
symbol) are always one character long.

3.1.1 Finer Token Classes

The example tokenizer presented in the previous section is likely to be deemed too simple for most
text processing applications. The token classes it recognizes are too coarse-grained. A user may
be interested in refining this classification, for example by

• making the tokenizer distinguish between initials (token class letter) and longer words;

• defining an extra token class float for float-point numbers such as 524.12, which are currently
split into two digits and a punctuation character in between.

The new classes are accounted for by extending the automaton with the final states qletter and
qfloat , as shown in figure 3.2. On reading the first alphabetic character of a token, the DFSA
moves from q0 to qletter . If there are no more alphabetic characters following it, the character is
split off as a separate token, and the state the automaton is in determines the token class: letter.
If the first alphabetic character is followed by more alphabetic characters, the automaton ends up
in state qword . This is indeed the intended interpretation: a word is now defined as a sequence of
two or more alphabetic characters.

Integers and float-point numbers are acounted for by the states qnumber , qsep and qfloat . On
scanning the first digit of a number, the automaton goes to state number and remains there,
possibly reading further digits. If that is all, the token is classified as number.

If the digits are followed by a dot, the automaton jumps to state qsep . Note that this state
is non-final because expressions such as 100. are not legal float-point numbers. Only when the
automaton sees another digit, does it move to the final state qfloat denoting floats.

The existence of qsep , a state that is both non-initial and non-final, may enforce backtracking.
Consider the application of the tokenizer to our initial example, the string He was fined $100.

3.1. TOKENIZATION 63

After processing the token $ (recognized as a symbol), the DFSA consumes the remainder 100.,
ending up in qsep . Since qsep is non-final, it does not denote any legal token class. Thus, the
automaton must backtrack to the last final state it has seen, namely qnumber . Accordingly, the
string 100 is returned as the current token and classified as a number. The remaining dot is read
again and classified as a punct token.

q0

qletter

qword

qsymbol

qnumber

qsep

qpunct

qspace

qfloat

[[:alpha:]]

[[:alpha:]]

[[:symbol:]]

[[:digits:]]

.

[[:digits:]]

[[:punct:]]

[[:space:]]

[[:alpha:]]

[[:space:]]

[[:digit:]]

[[:digit:]]

Figure 3.2: A basic tokenizer DFSA.

The pseudocode of the longest-match tokenization algorithm is presented in algorithm 3.1.1.
The function Tokenize() is passed the tokenizer DFSA A, a string Text , and a mapping TokenClass
from states of A to token classes. We assume that TokenClass[q0] = unclassified . The string Text is
successively consumed by repeated calls to the procedure LongestMatch(). LongestMatch()
is passed two arguments: Text and the position StartPos where the next token is expected to
start. It consumes the longest matching prefix of the remaining portion of Text and returns the
end position of the recognized token (StartPos) together with the final state it ends up in (qfin).
The corresponding substring of Text , together with the token class information associated with
qfin and expressed by TokenClass[qfin] is then appended to the token list.1

1 Note that LongestMatch() may fail to consume any characters of the input string, for example if there is
no transition for Text [StartPos] leaving q0. In such a case, the LongestMatch() returns the pair (StartPos, q0).
Tokenize() then splits off the current character as an unclassified one-symbol token (alternatively, such unclassified
characters may be ignored by the tokenizer).

64 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

Algorithm 3.1.1: Tokenize(A,Text ,TokenClass[])

StartPos ← 1
TokenList ← []
while StartPos ≤ |Text |

(EndPos, qfin)← LongestMatch(A,Text ,StartPos)
if EndPos = Pos

EndPos ← EndPos + 1
Append(TokenList , (Text [StartPos,EndPos],TokenClass[qfin])
StartPos ← EndPos

return (TokenList)

procedure LongestMatch(A,Text ,StartPos)
q ← q0

qfin ← q0

EndPos ← StartPos
for i← StartPos to |Text |

if δ(q,Text [i]) defined
q ← δ(q,Text [i])
if q ∈ F

qfin ← q
EndPos ← i

else break
return (EndPos, qfin)

The running time of the longest-match tokenization algorithm can be measured by the total
number of iterations of the for loop in function LongestMatch(). At the very least, there are
|Text | iterations as each character of the input string needs to be processed. In addition, some
overhead may be caused by backtracking. The maximum number tbacktracking of backtracking
steps depends on the automaton. In the above DFSA, backtracking is limited to one character
per token, and the maximum number of tokens is |Text |, hence 2 · |Text | is the upper bound on
the entire number of iterations. In general, if the number of backtracking steps is limited by some
fixed number K, there are at most K · |Text | iterations. Since the execution time of the operations
performed in the loop of LongestMatch() does not depend on Text , the running time of the
longest match tokenization algorithm is Θ(|Text |).

If unlimited backtracking is possible, the running time of the algorithm is quadratic. To see
that, suppose we want to recognize emoticons such as smiley faces as a separate token class. A
smiley face can have different forms, e.g. :-), ;->, :-------(, :--)))))))))), etc. In general,
it starts with a character encoding the eyes of the face (either : or ;), followed by the nose (e.g.
-), and finally the mouth ((or)). The eyes are optional because --(is also a potential emoticon.

The recognition of such face-like emoticons is the task of the DFSA shown in figure 3.3.

q0 qpunct qnose qsmiley
:;— — ()<>][

— ()<>][

Figure 3.3: A DFSA encoding emoticons.

3.1. TOKENIZATION 65

Now consider the application of this DFSA to a string of length n, starting with a colon
followed by n− 1 dashes: :---...---. On seeing the initial :, the automaton enters state qpunct .
The colon is a legal punct token, but it might also start a smiley face, so the matching continues.
The algorithm traverses the entire sequence of n dashes only to discover that the sequence is not
terminated by a “mouth character”. Hence, the DFSA reaches the end of the input string in
the non-final state qnose and must backtrack to the last previously seen final state, which is the
occurence of qpunct after consuming the first character. Thus, the automaton has traversed n− 1
characters, but the token returned is only one character long.

The next call to LongestMatch() is passed the remainder ---...---. Since there is a
transition from q0 to qnose labelled —, the automaton consumes all n − 1 dashes, but does not
end up in a final state. Hence, another punct token is returned, namely —.

This happens n times; at i-th time, the algorithm traverses the n−i characters from the current
position to the end of the string. Thus, the total number of iterations is Σn

i=1i = n2+n
2 = O(n2).

The above example shows that tokenizer automata should be designed carefully in order to
avoid quadratic runtime behavior. Fortunately, patterns that give rise to unlimited backtracking
are rare in text processing applications. As a result, tokenization can be assumed to be achievable
in linear time.

3.1.2 Regexp-Based Tokenization

As already mentioned in chapter 2, automata are not normally designed by hand. Even if the
tokenizer DFSAs constructed so far have been simple, further refinement of the token classes is
hardly doable in the same way. We might want the tokenizer to distinguish between upper-case,
lower-case, capitalized and mixed-case words, recognize currency amounts, etc. All this may and
should be formulated using regular expressions:

Lower-case initial (LCI): [[:lower:]]

Upper-case initial (UCI): [[:upper:]]

Lower-case word (LCW): [[:lower:]][[:lower:]]+

Upper-case word (UCW): [[:upper:]][[:upper:]]+

Capitalized word (CW): [[:upper:]][[:lower:]]+

Number (N): ([[:digit:]]+,)*[[:digit:]](\.[[:digit:]]+)?

Obviously, this is a more elegant and less error-prone formulation than the direct automata con-
struction done in the previous tokenizer examples. The regular expressions can be compiled into
FSAs and then used in tokenization.

One possible way of doing that would be to turn each token class regexp Ri into a DFSA Ai,
and then match all Ai’s against the input string w. The longest matching prefix of w would be
split off as the next token. The Ri matching this prefix would define its token class.

This solution is correct, but not optimal. It involves running the n DFSAs separately, making
the execution time of the algorithm directly dependent on the number of token classes. As a
matter of fact, we have already seen that tokenization can be done with a single DFSA (cf.
algorithm 3.1.1).

What we may do is to create a DFSA for the union R1| . . . |Rn of all the token class regular ex-
pressions. According to the semantics of regular union, the expression R1| . . . |Rn matches exactly
the strings that match any of the regexps R1, . . . , Rn. The successive calls to LongestMatch()
will thus return exactly the same strings as the näıve algorithm based on matching the regexps
independently.

However, tokenization also requires the identification of the token class for each token. In
algorithm 3.1.1, it is determined by the (final) state of the DFSA after it has read the characters

66 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

of the token. As long as the DFSA is constructed by hand, we can specify this explicitly. Thus,
state qword corresponded to the token class word , etc.

In an automatically compiled DFSA, such information is no longer available. The equivalence
operations used during compilation may change state indices, so any connection between states
and the patterns they originate in is lost.

In order to re-establish this relationship, we use a trick. For each token class Ri, we introduce a
different sentinel character $i 6∈ Σ. Instead of computing the union of the Ri, we now append the
sentinel characters to the respective patterns and create a deterministic acceptor for the regular
expression R1$1| . . . |Rn$n.

A fragment of such an acceptor is shown in figure 3.4.

q0

q1

q2

q3

q4

q5

qfin

[[:upper:]] $uci

[[:lower:]]

[[:upper:]]

$lci

[[:lower:]]

[[:lower:]]

$ucw

$uc

$lcw

[[:upper:]]

[[:lower:]]

[[:lower:]]

Figure 3.4: Fragment of a DFSA encoding token classes via final transitions.

Interestingly enough, the DFSA does not accept any string over the original alphabet Σ because
all states reachable via characters a ∈ Σ are non-final. In order to get to the final state qfin , a
sentinel character must be consumed. This is the expected behaviour because each of the patterns
in the regexp R1$1| . . . |Rn$n ends in a sentinel character.

Furthermore, suppose that some prefix u of the input string matches one of the original patterns
Ri. This is equivalent to u$i matching the pattern Ri$i. In other words, u matches a pattern Ri if
and only if (a) q = δ(q0, u) is defined, and (b) δ(q, $i) ∈ F . Thus, if the automaton has reached a
state q, the matching patterns can be identified by checking for transitions leaving q and labelled
with sentinel characters. Such arcs are often called final transitions.

In figure 3.4, the final transitions indicate a match of the upper-case initial pattern whenever
the automaton enters state q1. Similarly, q2 corresponds to lower-case initial, q3 to upper-case
word, q4 to capitalized word and q5 to lower-case word.

3.1. TOKENIZATION 67

Encoding

If the tokenization procedure presented in algorithm 3.1.1 is applied to the DFSA shown in fig-
ure 3.4, it will not work because none of the states q1, . . . q5, corresponding to the token patterns,
is final — a condition for the function LongestMatch() to report a token.

This incompatibility can be eliminated easily by:

• making the function TokenClass(q) return the token class of the sentinel character corre-
sponding to the final transition leaving q, or nil if no such final transition exists;

• making final each state q such that TokenClass(q) 6= nil;

• deleting qfin and the final transitions, which are no longer needed since the information they
express is already encoded in function TokenClass(q).

For better readability, final transitions will henceforth be represented not by arcs, but boxes
attached to state labels:

q4

lcw

Non-Disjoint Patterns

The token classes defined in the above examples are disjoint, i.e., each string belongs to at most
one token class. Accordingly, the construction shown in figure 3.4 produces a DFSA in which, for
each q ∈ Q, there is at most one final transition originating in q.

However, the construction can also deal with non-disjoint patterns. For example, consider the
patterns a, a(a|b) and a*. Obviously, the string a matches the first and the third pattern, while
aa matches the second and the third one. The compilation of the three patterns into a DFSA with
final transitions produces the structure shown in figure 3.5.

q0

a*

q1

a,a*

q2

a(a|b),a*

q3

a(a|b)

q4

a*

a a

b

a

a

Figure 3.5: A DFSA with final transitions recognizing the non-disjoint patterns a, a* and a(a|b). Note
that states q1 and q2 correspond to the match of more than one pattern.

Note that the states q1 and q2 have more than one final transition associated with them, which
indicates that the strings leading to these states match more than one pattern. In other words, the
construction of a DFSA with final emissions permits simultaneous matching of several patterns.

This idea can be used to simplify token class definitions. So far, we have made sure that
these definitions are disjoint, but this may be difficult. For example, the regexp definitions of
lower-case word, upper-case word and capitalized word given above leave mixed-case words such as
WordPerfect unaccounted for. Thus, a definition of the token class mixed-case word is required.

68 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

If we insist on this definition being disjoint from all the other token regexps, its formulation is
very cumbersome and not intuitive at all:

[[:alpha:]]*[[:lower:]][[:upper:]][[:alpha:]]*|
[[:alpha:]]*[[:upper:]][[:upper:]][[:lower:]][[:alpha:]]*
Instead, it would be much easier to define the mixed-case word class as a default: [[:alpha:]]+

unless the token matches any of the other three word or initial token classes. In this way, we no
longer require the token class definitions to be disjoint, but state that potential conflicts are
resolved according to the order in which the rules are formulated.

Lower-case initial (LCI): [[:lower:]]

Upper-case initial (UCI): [[:upper:]]

Lower-case word (LCW): [[:lower:]]+

Upper-case word (UCW): [[:upper:]]+

Capitalized word (CW): [[:lower:]]+

Mixed-case word (MCW): [[:alpha:]]+

The compilation of the union of the above regular expressions into a DFSA produces the
structure shown in figure 3.6.

q0

q1

uci, ucw, mcw

q2

lci, lcw, mcw

q3

ucw, mcw

q4

cw, mcw

q5

lcw, mcw

q6

mcw

[[:upper:]]

[[:lower:]]

[[:upper:]]

[[:upper:]]

[[:lower:]]

[[:lower:]]

[[:lower:]]

[[:upper:]]

[[:upper:]]
[[:upper:]]

[[:lower:]]

[[:lower:]]

[[:alpha:]]

Figure 3.6: Tokenizer DFSA defined using prioritized non-disjunctive regular expressions.

Several final states are associated with multiple final transitions. For instance, q1, reachable
from q0 via a single upper-case character, has 3 final transitions indicating the match of the
patterns lower-case initial, lower-case word and mixed-case word. It is here that the prioritization
of the patterns comes into play: lower-case initial comes before the other token regexp definitions,
hence lower-case initial becomes the token class associated with q1.

3.2. PATTERN MATCHING 69

The same happens to the other states: the pattern that comes first in order of precedence is
kept as the actual token class while the other ones are removed. In the state diagram above, the
final transitions which are kept are underlined.

The token category mixed-case word is the last one in order of priority, hence it becomes the
token class label of one state only, namely q6. The reader may check that all strings leading to q6

are mixed-case words, indeed, as well as that all mixed-case words lead to q6.
If we assume that the patterns R1| . . . |Rn are numbered in ordered of decreasing priority then

the function TokenClass required by the tokenization algorithm is defined as follows:

TokenClass[q] =
{

min(FinalTr [q]) if FinalTr [q] 6= ∅
nil otherwise

where FinalTr [q] denotes the set of all patterns for which a final transition starting at q exists.
The mechanism of final transitions is a commonly used technique. We will see it in other

applications, too.

3.2 Pattern Matching

3.2.1 Finding Patterns in Time O(|w|)
In the section on tokenization, we saw how a text can be split into a contiguous sequence of
substrings corresponding to consecutive pattern matches. A related but different problem occurs
in search applications, where one wants to identify all occurrences of a pattern (e.g. an e-mail
address) in a text. These occurrences are typically non-contiguous and interspersed with possibly
large chunks of text not matching the pattern.

Even if we can formulate the pattern as a regular expression and compile it into a DFSA, this
does not provide us with a device for efficient search. Consider a string w = a1 . . . at in which
v = ak . . . al is the first match of a pattern R.

w = a1a2 . . . ak−1

v∈L(R)︷ ︸︸ ︷
ak . . . al al+1 . . . at

If R is compiled into a DFSA, the resulting automaton AR can tell that v matches R, but we
need to find out that it needs to be applied at string position k. This can be done in a näıve way
by running AR on the string ai . . . at for i = 1, . . . , t− 1.

Algorithm 3.2.1: TrialAndFailureLocatePattern(Text)

for k ← 1 to |Text |
q ← q0

for l← k to |Text |
if δ(q,Text [l]) undefined
break

q ← δ(q,Text [l])
if q ∈ F

report pattern match at position (k, l)

Eventually, all matches of R can be found in this way, but the automaton may have to traverse
the whole suffix ai . . . at for each i, even if no matches are found. The total number of transitions
looked up in this worst-case situation is Σ|w|i=1i = |w|(|w|+1)

2 = O(|w|2). Since |w| may be very large
for typical text search applications, this solution is not satisfactory.

Instead, the problem may be reduced to matching the whole of w against a single regular
expression. Observe that the prefix of w preceding v matches Σ∗:

w =
Σ∗︷ ︸︸ ︷

a1a2 . . . ak−1

v∈L(R)︷ ︸︸ ︷
ak . . . al al+1 . . . at

70 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

Hence, searching for v is equivalent to matching w against the regexp Σ∗R. For this, we can
compile Σ∗R into a DFSA, and run this DFSA on w. Whenever the automaton enters a final
state, we know we have just finished reading a match of R.

Algorithm 3.2.2: LocatePattern(Text)

q ← q0

for i← 1 to |Text |
q ← δ(q,Text [i])
if q ∈ F

report end of pattern at position i

This search strategy requires only one deterministic pass of the input string. Hence, it makes
it possible to identify all occurrences of a regular pattern in time O(|w|).

The algorithm can be generalized in two ways, as discussed below.
Locating the Start and the End of a Pattern. Note that the algorithm only reports the
end of each match, but not its beginning. If we are more interested in the start positions of all
matches, the solution is symmetric. We need to match the regexp RΣ∗ against suffixes vz of w.
In order to be able to do so, we compile RΣ∗ into an FSA, then reverse and determinize it, and
finally run the reverse DFSA from left to right on w.

If both the beginning and the end of each match are required (e.g. in order to replace the
matching substring by something else), we need to keep two DFSAs: one for Σ∗R and one for the
reverse regular expression R−1. As soon as a match of Σ∗R has been reported for a prefix w′ of
w, we can run the acceptor for R−1 on w′ from right to left in order to determine the starting
point(s) of the match(es) v such that w′ = uv. The worst-case complexity of this matching method
is quadratic.

The task is easier if R is a fixed-length pattern, e.g. [Cc].[Tt], or when we look for a word.
In such a case, the start of the match is determined by subtracting the length of the pattern from
the length of w′. A separate automaton for R−1 is obviously not required.
Search for Multiple Patterns. The algorithm outlined above also allows for the simultaneous
matching of a collection of regular patterns R1, . . . , Rn. Instead of Σ∗R, the input string w must be
matched against Σ∗(R1| . . . |Rn). If, in addition to locating the pattern matches, one is interested
in actually identifying the matching pattern Ri for each match, each pattern can be associated
with a separate final transition $i, as shown in section 3.1.2. The input string is then matched
against the pattern Σ∗R1$1| . . . |Rn$n.

3.2.2 Failure Function

The construction of a DFSA for the regexp Σ∗R involves the determinization of the NFSA created
by regexp compilation. Since the worst-case running time of the subset construction algorithm
is exponential in the number of states of the NFSA, the construction may become very slow. In
addition, the DFSA may also become very big, especially if the pattern R is complex and the
input alphabet |Σ| is very large.

The Aho-Corasick string matching algorithm provides a faster way of constructing a DFSA
for a set of patterns. Also, the DFSA is smaller at the expense of having a slightly more complex
encoding of the transition function. In its original version, the algorithm searches for occurrences
of some strings u1, . . . , un rather than general-case regular patterns. A generalisation to arbitrary
patterns is possible, but we will concentate on the simpler problem. The solution required the
introduction of a new data structure, called a trie, and a space-efficient encoding of the transition
function. These two issues are discussed separately in the following two sections.

Data Structures: Tries

Suppose we want to be able to locate occurrences of the strings a, abbb, ba and bb in texts. The first
step is to construct a DFSA for the language {a, abbb, ba, bb}. In order to do this quickly, we directly

3.2. PATTERN MATCHING 71

construct a DFSA rather than follow the standard two-step compilation method, which first turns
a regular expression into an NFSA and then determinizes it. More precisely, we construct a data
structure called a trie, i.e. a tree-shaped DFSA shown in figure 3.7.

q0

q1

a

q2

b

q5

b

q3

b

q4

a

q6

b

q7

b

Figure 3.7: A trie encoding the language {a, abbb, ba, bb}.

Each state in the trie can be reached by exactly one string consumed by the automaton: q0 by
ε, q1 by a, q2 by b, etc. We call such a string the key of state q and denote it key [q]. A new string
u can be inserted into a trie A = (Σ, Q, q0, F, δ) by (a) identifying the longest prefix x of u such
that q = δ(q0, x) is defined, (b) appending a chain of states consuming the remainder of u to q, so
that δ(q0, u) is defined, and (c) making δ(q0, u) final.

Figure 3.8 shows how the trie shown in figure 3.7 is created out of a trie for {a, ba, bb} by
inserting the string abbb into it. The original trie is marked in grey, the new states and transitions
in black. The string a, consumed by A along the path q0, q1, is identified as the longest common
prefix of abbb and A. The remainder bbb is accepted along the path q1, q3, q6, q7, where q3 and q6

and q7 are new states (corresponding to the strings ab, abb and abbb, respectively). The state q7

is added to F in order for abbb to be accepted.

The pseudocode of the insertion operation is presented in algorithm 3.2.3. Word is the word
bing inserted into the automaton. The while loop traverses the prefix of Word that is already in
the automaton. At the beginning of the i-th iteration of the loop, the variable q holds the value of
δ(q0,Word [1 . . . i−1]). Then δ(q0,Word [1 . . . i]) = δ(q,Word [i]) is determined. If it is not defined,
we have arrived at the end of the prefix, in which case the procedure AddBranch() is called,
which inserts a chain of states that accept the remainder of Word . AddBranch() returns the
last state in the chain, which is made final in the last step.

The main while loop and the for loop in AddBranch() execute exactly |Word | times. If
we assume that the running time of the operations performed inside the loops (transition lookup,
state allocation and the insertion of a new state into Q) is independent of the size of A, then the

72 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

q3

q6

b

q7

b

q0

q1

a

q2

b

q5

b

q4

ab

Figure 3.8: Insertion of the string abbb into a trie encoding the language {a, ba, bb}.

insertion algorithm runs in time O(|Word |).

Algorithm 3.2.3: TrieInsert(A = (Σ, Q, q0, F, δ),Word)

q ← q0

i← 1
while δ(q,Word [i]) is defined

q ← δ(q,Word [i])
i← i + 1

q ← AddBranch(q,Word [i...|Word |])
if q 6∈ F

F ← F ∪ {q}

procedure AddBranch(q, w)
for i← 1 to |w |

qnew ← AllocateNewState()
Q← Q ∪ {qnew}
δ(q,w [i])← qnew

q ← qnew

return (q)

A trie for a language {u1, . . . , un} can be constructed by successively calling TrieInsert(A, ui),
starting with an empty automaton containing only the initial state q0. The total running time
of the construction algorithm is O(Σn

i=1|ui|). As a result, a trie can be constructed without the
exponential blow-up associated with the subset construction algorithm.

3.2. PATTERN MATCHING 73

Search

Having constructed a trie for the strings u1, . . . , un, we can use it to locate their occurrences in an
input string w = a1 . . . at. As in section 3.2.1, we start with the idea of first finding all ui starting
at a1, then all ui starting at a2, etc. This can be done by running the trie DFSA on the suffixes
ak . . . at of w for k = 1, . . . , t. Whenever the automaton enters a final state after consuming the
string ak . . . al, the substring ak . . . al is reported as one of the words we are searching for.

For example, consider the application of the trie encoding the words {a, abbb, ba, bb}, shown in
figure 3.7, to the string abbab.

In the first iteration, the search algorithm tries to accept a prefix of the original string w =
abbab. A match of the pattern a (final state q1) is obviously reported after consuming the first
character of w. After consuming two more characters, the automaton ends up in state q6. From
there, there is no transition labeled with the next character a. This means that no more patterns
encoded in the trie start at the first letter of the input string.

In the next step, we check if any of the words we are looking for start at the second character
of w. This is equivalent of going back to state q0 and running the automaton on the suffix bbab.
This time, the automaton consumes the prefix bb and enters state q5. This state is final, and
therefore a match of the pattern bb is reported. The next character (a) cannot be accepted in q5,
so search restarts at the next string position, corresponding to the suffix bab of w.

The whole process is shown in figure 3.9. Dashed arcs denote the backtracking steps the DFSA
has to take in order to move back to the next start position in the input string.

q0 q1 q3 q6
a b b

q5q0 q2
b b

q2 q4
a

q0
b

q1 q3
b

q0
a

q2q0
b

Figure 3.9: The application of näıve backtracking search in order to locate occurrences of words encoded
in the trie shown in figure 3.7 in string abbab.

74 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

For each suffix ak . . . at of w, the trie automaton performs at most as many transitions as there
are characters in the longest word ui, a number we denote by L (formally, L = max{|ui| : i =
1, . . . , n}). Since k ranges over 1, . . . , t, the total running time of the algorithm is O(L · |w|).

This trie-based search technique is basically a version of algorithm 3.2.1 (TrialAndFailure-
LocatePattern(), described in section 3.2.1), restricted to acyclic patterns. This restriction
improves the running time from O(|w|2) to O(L · |w|), but the factor L still depends on the words
we are looking for. The algorithm is obviously slower than the one based on running a DFSA
for the pattern Σ∗R on the input string: the latter does not involve any backtracking. In the
following, we shall see how to avoid backtracking and perform a deterministic search using a trie.

Recall that each state q ∈ Q in the trie uniquely identifies the string key [q] = a1 . . . at that
leads from q0 to q: δ(q0, key [q]) = q. On the other hand, we know that after the next backtracking
step, the algorithm will have to process the characters a2 . . . at, so they actually do not need to
be re-read.

For example, if q = q6, then key [q] = abb and the string to be consumed after the next
backtracking step starts with bb, which leads to state δ(q0, bb) = q5. Thus, if we precompute
the values of δ(q0, v) for prefixes v of the patterns, the backtracking step can be replaced by a
“shortcut” transition to the state reachable by the respective prefix. Such transitions are called
failure transitions.

Figure 3.10 demonstrates how failure transitions (the vertical arcs) may be used to replace
backtracking steps (marked in grey). It is obvious that they save a lot of processing time: now
there are only 9 transitions instead of 25.

q0 q1 q3 q6
a b b

q5

q2 q4
a

fail

fail

q1 q3
b

fail

q2

q0 q2
b b

q0
b

q0
a

q0
b

fail

Figure 3.10: The application of the Aho-Corasick algorithm to the problem of locating occurrences of
the string patterns a, abbb, ba, bb in string abbab. The nodes and transitions actually traversed by the
algorithm are drawn in black. The nodes and transitions additionally traversed by the näıve backtracking
algorithm are marked in grey.

3.2. PATTERN MATCHING 75

The failure transitions are best represented by a function fail : Q → Q, so we can write
fail [q6] = q5, fail [q5] = q2, etc.

Note that the failure function sometimes has to model the result of multiple backtracking
steps. For example, the application to the string abbbb, shown in figure 3.11, involves the failure
transition from state q7 to q5, which stands for two backtracking steps.

q0 q1 q3 q6 q7
a b b b

q5

q2 q5
b

q5q0 q2
b b

q2
b

q0
b

q0
b

fail

fail

Figure 3.11: The application of the Aho-Corasick algorithm to the string abbbb using the trie shown in
figure 3.7. The transitions required by the näıve O(L · |w|) search algorithm are marked in grey. Note
that the first failure transition stands for two backtracking steps.

Thus, if key [q] = a1 . . . at is the string leading to state q, then the value of fail [q] is the state
we arrive at by successively applying the backtracking search to the suffix a2 . . . at.

Also note that the state fail [q] sometimes does not have a transition labeled with the cur-
rent symbol: e.g. fail [q7] = q5, but δ(q5, b) is not defined. The algorithm then backs off to
fail [q5] = fail [fail [q7]]. In the general case, we need to inspect fail [q], fail [fail [q]], etc., until a tran-
sition labeled with the current symbol is found. Procedure NextState(q, a) (algorithm 3.2.4)
implements the recursive application of the failure function in order to determine the state that
can be reached from q by consuming symbol a.

Algorithm 3.2.4: NextState(q, a)

while q 6= q0 and δ(q, a) undefined
q ← fail[q]

if δ(q, a) defined
return (δ(q, a))

else return (nil)

Note that the length of key [q] decreases in each iteration because we are trying shorter and

76 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

shorter suffixes. Therefore, if the condition that δ(q, a) be defined is not satisfied, the algorithm
reaches fail [. . . fail [q] . . .] = q0. Then, the procedure returns nil. This may happen, e.g., if we
encounter a symbol not used in any of the patterns ui, such as the letter c. In such a case, the
symbol in question is skipped and search re-starts at the next string position in state q0.

The actual top-level search algorithm 3.2.5 is a slightly modified version of algorithm 3.2.2,
the only difference being that the call NextState(q, a) replaces the transition lookup δ(q, a).
Since NextState(q, a) may return nil, this special value is handled by the DFSA skipping one
character and jumping back to q0.

Algorithm 3.2.5: LocatePattern(Text)

q ← q0

for i← 1 to |Text |
q ← NextState(q,Text [i])
if q = nil

q ← q0

else if q ∈ F
report pattern match at position i

The algorithm relies on final states being indicators of pattern matches. This assumption may
require an extension of the original set F , as discussed in the following section.

Reporting Pattern Matches

The search strategy devised so far makes it possible to deterministically emulate the näıve back-
tracking search strategy by taking shortcuts called failure transitions. Recall that each failure
transition replaces a path traversed by the näıve algorithm. For example, the failure transition
from q7 to q5 in figure 3.11 replaces the path q7, q0, q2, q5, q0, q2, q5. Now observe that the path
contains the final state q5, whose first occurrence indicates a match of the string pattern bb after
consuming the prefix abb. Since the path is no longer traversed, this piece of information must be
stored in another form: by marking the state q6, reached by the algorithm after consuming the
prefix abb, as final. Otherwise, algorithm 3.2.5 will not report a match.

In general, the Aho-Corasick algorithm can enter a state q ∈ Q only if the string consumed so
far ends in key [q]. Even if q 6∈ F , there may be a suffix v of key [q] such that δ(q0, v) ∈ F . In other
words, v is one of the patterns ui we are looking for. As a result, we must mark as final all states
q for which some ui is a suffix of key [q].

Interestingly, the above process may be performed solely based on the values of the failure
function. If we align the paths of all suffixes of some string u accepted by the trie automaton,
then we have the situation shown in figure 3.12, where δ(q0, bb), δ(q0, b) and δ(q0, ε) are shown in
the column below state δ(q0, abb) = q6.

Obviously, these are the states that are reached by backtracking from δ(q0, abb) = q6 and
consuming the next suffix of abb, in other words — the successive values of the failure function:
fail [q6], fail [fail [q6]], fail [fail [fail [q6]]], The set of such values can be called the failure closure
of q6 and denoted fail∗[q6].

Therefore, instead of checking if δ(q0, v) ∈ F for each prefix of abb, we may just inspect the set
fail∗[q6]: since fail∗[q6] ∩ F 6= ∅, we must add q6 to F .

The benefits of this perspective may not appear obvious at first, but will become clear when
we show how to incrementally construct the failure function in the following subsection.

Figure 3.13 shows the trie from figure 3.7 with the values of the failure function marked for
each state (each node is labeled with the respective state symbol qi followed by the value of the
failure function: qi/fail [qi]). Note that state q6 is now marked as final.

3.2. PATTERN MATCHING 77

q6

q5

q2

q0

fail

fail

fail

q0 q1 q3
a b b

q4
a

q1

q0 q2
b b

q0
b

a

q0

Figure 3.12: Alignment of the string abb and the paths for all prefixes of abb.

Computation of the Failure Function

In order to compute the failure function efficiently, assume that it is computed in increasing order
of |key [q]|, starting with q0. We set fail [q0] = nil as there is no state to backtrack to from
the initial state. Similarly, if the search fails in q1 or q2, we can only backtrack to q0. Hence,
fail [q1] = fail [q2] = q0.

Now suppose we want to determine fail [q7] (figure 3.14). Since key [q7] = abbb, one possibility
would be to process the suffix bbb using the näıve backtracking strategy, which involves backtrack-
ing 3 characters, moving back to q0, then following the path q7, q0, q2, q5, backtracking and moving
to q0 again, and finally following the path q0, q2, q5.

However, since fail [q] has already been determined for all q such that |key [q]| < |key [q7]|, we
can simply backtrack to state q6, and then take a shortcut to fail [q6] = q5 (instead of going
q6 → q3 → q1 → q0 → q2 → q5) and check if δ(q5, b) is defined. Since it is not, we take another
shortcut, going from q5 to fail [q5] = q2 (instead of going q5 → q2 → q0 → q2). This time, there is
a transition consuming b: δ(q2, b) = q5. Hence, we set fail [q7] = q5.

The recursive application of the failure function starting in q6 is nothing else than a call to
NextState(q6, b).2 As a result, fail [δ(q, s)] =NextState(q, s) for any pair q ∈ Q, s ∈ Σ, and

2Note that NextState(q6, b) makes use of the failure function, which is being constructed. There is no risk of
looking up a still undefined value fail [q] because — as already mentioned — NextState(q6, b) considers states in
decreasing order of |key[q]|.

78 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

q0/nil

q1/q0

a

q2/q0

b

q5/q2

b

q3/q2

b

q4/q1

a

q6/q5

b

q7/q5

b

Figure 3.13: A trie encoding the language {a, abbb, ba, bb} with the values of the failure function.

the computation of the failure function can be stated as follows.

Algorithm 3.2.6: ComputeFailureFunction(Σ, Q, q0, F, δ)

fail [q0]← nil
Enqueue(q0,Queue)
while Queue 6= ∅

q ← Dequeue(Queue)
for each s ∈ Σ such that δ(q, s) is defined

fail [δ(q, s)]← NextState(q, s)
Enqueue(δ(q, s),Queue)
if NextState(q, s) ∈ F

F ← F ∪ {δ(q, s)}

The algorithm uses a queue of states in order to explore the trie in a breadth-first manner so
that the states q ∈ Q are considered in ascending order of key [q]. For each state q, the algorithm
visits all states r reachable from q via a single symbol s, and sets fail [r]← NextState(q, s).

Also note that whenever NextState(q, s) is final, the state r = δ(q, s) is made final itself.
This makes sure that p ∈ F for each state p such that fail∗[p]∩F 6= ∅ (cf. the previous subsection).
Space Savings

Apart from fast construction, the greatest advantage of the failure function construct used in
the Aho-Corasick algorithm is its space-efficiency. Note that the transition function δ does not
encode all the transitions of the automaton: some of them are represented implicitly by the failure
function and computed by NextState(q, s). In this sense, NextState(q, s) may be viewed as
the actual transition function of the automaton, while δ becomes only an auxiliary structure.

The space savings are significant. The trie shown in figure 3.13 contains 8 states and 7 transi-
tions. In addition, space for 8 values of the failure function (one per state) is needed. In contrast

3.3. DICTIONARIES 79

q0 q1 q3 q6 q7
a b b b

q5

q5q0 q2
b b

q2
b

q0

b

fail

fail

fail

Figure 3.14: Computation of fail [q7]← q5. The values fail [q7] = q5 and fail [q5] = q2 are assumed to have
been determined before, and can replace the backtracking steps and paths they stand for.

to that, a conventional transition function would have to encode all |Q| · |Σ| = 24 transitions.
Moreover, the size of the failure function DFSA does not depend on the size of the alphabet while
adding a new symbol to Σ adds |Q| transitions to a conventional transition table.

3.3 Dictionaries

Dictionaries are necessary components of most NLP applications. They come in a variety of types,
ranging from simple word lists to semantic lexicons. They are often very large: broad-coverage
dictionaries of English contain hundreds of thousands of words; this number may easily increase
to millions if proper names are included. As a result, compact storage of and fast access to
lexical data are required. Finite-state machines provide us with a formal framework meeting both
requirements. In section 3.3.1 we show how to store a dictionary as a finite-state automaton in
form of a trie. This guarantees fast access. A dictionary trie can be minimized (section 3.3.2). In
section 3.3.3, we introduce algorithms for the incremental construction of minimal automata. We
finish with a discussion on how to associate additional information with words in a dictionary.

3.3.1 Dictionary Tries

Suppose we have a list of 2 000 000 English lowercase words. If the average word length is, say,
5.5 letters (bytes), we need 13 000 000 bytes to store them as text (in case you wonder why we
need 6.5 bytes for each word, remember that we need one character to separate them). Pure text
is not a good data structure for search. If we add a vector of 4-byte pointers, each pointing to
the beginning of a word, we will be able to use binary search (see box on page 80) to find words,
and our dictionary will grow to 19 000 000 bytes. This is not much for modern computers, but our
dictionary is only a word list; syntactic or semantic dictionaries can be much larger.

In order to save space, we may consider dividing the dictionary into 26 sublists, one per
character and holding words beginning with that character, as shown in figure 3.15.

80 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

z

c
b

a +

ardvark
back
bacus
. . .

abble
abe
aby
. . .

aire
any
ap

Figure 3.15: Division of a list of words into sublists. Each sublist contains words beginning with the
same letter. The letter itself is removed from the words and stored in a pointer. The sign + indicates that
the letter leading to a sublist is a full word.

Binary search

Binary search is an algorithm for searching a set of sorted data for a particular value which
takes advantage of the characteristic of data being sorted in advance. An important prereq-
uisite is random access to the data being searched.

The idea behind binary search is to repeatedly eliminate half of the search interval in
each step of the algorithm until the searched value is found (or eventually not found). Let
us consider as an example searching a sorted array of length n. We begin searching with an
interval covering the whole array. If the value we are searching for matches the value of the
middle element in the array, we are done. If, however, the value of the search key is less than
the item in the middle of the interval, we narrow the interval to the lower half. Otherwise we
narrow it to the upper half. Subsequently, we carry out the same procedure repeatedly until
the value is found or the interval is empty, i.e., the search key has not been found.

The runtime complexity of binary search on a sorted list of length n is O(logn) since half
of the list is eliminated with each comparison and after performing logn+1 comparisons the
search interval will be of length less than or equal to one. Below we give a step by step
example of searching for the key 6 in the sorted array 1 3 5 6 7 12 23 34 35 43 50.

step search space action
1 1 3 5 6 7 12 23 34 35 43 50 search left interval
2 1 3 5 6 7 search right interval
3 6 7 found — terminate

Please note that in the third step the length of the subarray to be searched is of even length.
In such a case we choose without loss of genericity the first element in the second half of the
array as the ’middle’ element.

Since all words in every sublist begin with the same letter, we do not need to store it with
each word; we can store only subsequent letters. Our dictionary is now a list of 26 pointers, and
a list of 26 sublists of words that are stored without their first letter. As there may be one-letter
words, like a, a flag (here marked by +; at most one byte) must be associated with each sublist
to indicate whether this is the case for a particular letter. The new data structure is stored on
2 000 000− 26× (4 + 1) = 1 999 870 fewer bytes, or 10% smaller, than the original one. The time
needed to find a particular word is also shorter. By examining a single letter, we reduce the search

3.3. DICTIONARIES 81

space by a factor of 26.
Encouraged by our initial success, we can repeat the process on the sublists. Then we can

move to their sublists, and so on. In this way, we create a hierarchical structure such as the one
shown in figure 3.16.

z

c

a +
b

a

b
c
. . .

•
•
•

e

h

•
•

. . .

a

a
e

h

•
•
•

. . .

b
c

•
•

. . .
d + •

Figure 3.16: The result of hierarchical division of a word list into sublists according to the n-th character,
n = 1, 2, A word is found by looking up its consecutive characters in the respective pointer lists. The
highlighted search path corresponds to the word bad.

In order to look up a word in such a structure, we go to the pointer list at the root and follow
the pointer associated with the first character of the word. The pointer points to another pointer
list, in which the second character of the word is looked up. Finally, if the word is in the dictionary,
we arrive at the pointer list corresponding to the last character and check the extra bit, which
must be set in this case.

The tree-shaped structure constructed in this way is nothing else than a trie, defined in sec-
tion 3.2.2. If each of the pointers is thought of as a transition (labeled with the letter associated
with the pointer), then the connection to finite-state automata becomes apparent: by successively
dividing a word list into lists of pointers (transitions), we have arrived at an FSA encoding method
for dictionaries.

Note that the lookup time for a word has become independent of the size of the dictionary:
for each letter of the word, we look it up in the appropriate pointer list, which may have at most
|Σ| entries. Depending on the encoding of the list, it may take from O(1) to O(|Σ|) steps. Thus,
the lookup time for a word w is bounded by O(|Σ| · |w|). In other words, the trie encoding of a
dictionary guarantees fast lookup.

The other objective, namely reducing the size of the dictionary, turns out to be more difficult
to achieve. If we keep a list of |Σ| = 26 pointers to represent the outgoing transitions at every level
of the tree, some of the pointers become void. For example, the letter q in many other languages
can only be followed by u, so all other pointers on the list reached by q will be void. This amounts
to a waste of space: in addition to the 26 pointers going from the root, we would have 262 = 676
for the next level, 263 = 17 576 for the next one, and so one. With the increasing level (letter
position in a word), most of the pointers will become void. The whole trie will take much more
space than the actual dictionary! A remedy is to store the non-void pointers only. However, the
result will still be likely to be larger than the original dictionary in ASCII format.

82 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

3.3.2 Dictionary Automata

Instead of compressing the dictionary, we have achieved quite the opposite effect. However, since
it is now encoded as a deterministic finite-state automaton, its size may be reduced using one
of the minimization algorithms introduced in section 1.7. Actually, some programs do just that.
However, because a trie can be an order of magnitude larger than the corresponding text, it may
not fit into the main memory of the computer.

3.3.3 Constructing Minimal Dictionaries

The solution to the above problem is to run two processes in parallel: one that constructs a trie,
and another one that minimizes it. Constructing a trie is a straightforward process covered by
algorithm 3.2.3. By changing the methods for minimization and synchronization of both processes,
we get different construction algorithms that avoid holding the entire trie in the memory.

Minimization was introduced in section 1.7. Note that the structure to be minimized is a tree.
It does not contain any loops — such structures are called acyclic. Therefore, special minimization
algorithms can be used that benefit from that property. An automaton in the form of a tree can
be minimized in time proportional to its size. Recall from page 10 that we call such an algorithm
linear. Recall also that the best general minimization algorithm — Hopcroft’s algorithm (cf.
page 42) — has log-linear complexity (O(n · log n)).

To see how to minimize an acyclic automaton, we must first return to the notion of the right
language. Its definition is repeated below for convenience.

−→
L (q) = {w ∈ Σ∗ : δ∗(q, w) ∈ F}

Recall that two states are equivalent if they have the same right language. When this happens,
it is possible to replace one of them with the other one. The result of performing such replacement
on all equivalent pairs is the minimal automaton. It is useful to rewrite the definition of the right
language in a different, recursive way:

−→
L (q) = {a

−→
L (r) : a ∈ Σ, r ∈ Q, δ(q, a) = r} ∪

{
∅ q 6∈ F
ε q ∈ F

(3.1)

Let the states Q of an automaton be divided into two disjoint sets: a set of states R already
evaluated by the minimization algorithm, and the remaining states U = Q \ R. The set R does
not contain any pair of equivalent states. Let us compute

−→
L (q), q ∈ U in such a way that:

−→
L (q) = {a

−→
L (r) : a ∈ Σ, r ∈ Q, δ(q, a) = r, r ∈ R}

One way to achieve that is to use the postorder method of visiting states of the trie. Suppose
that Oper is the operation that is to be performed on each state. For each state q, triggered by
Postorder(q0), the following code is executed:

Algorithm 3.3.1: Postorder(A = (Σ, Q, q0, F, δ), q)

for each a ∈ Σ such that δ(q, a) is defined
Postorder(δ(q, a))

Oper(q)

Once the right language of a state q has been computed, we can look into set R for equivalent
states. If such a state p can be found, it replaces q, i.e. state q is deleted, and all transitions that
lead to q (in a tree, there is exactly one such transition), are redirected to p. If an equivalent state
cannot be found, q is added to R.

3.3. DICTIONARIES 83

Since q0 — the root of the trie — is warranted to have a unique right language, the minimization
of a trie can be written in the following way:

Algorithm 3.3.2: AcyclicMinim(A = (Σ, Q, q0, F, δ), q)

for each a ∈ Σ : δ(q, a) ∈ Q
r ← δ(q, a)
AcyclicMinim(A, r)
if ∃p∈R p ≡ r

Q← Q \ {r}
δ(q, a)← p

else R← R ∪ {r}

This code is executed exactly once for each internal state (non-leaf) of a trie. Each state of
the trie except the root becomes the variable r in the for each loop exactly once. Deletion of a
state can be done in constant time, as can changing the destination of a transition.

The only potentially expensive operation is the comparison p ≡ q, i.e.
−→
L (p) =

−→
L (q). Instead

of a direct application of the recursive formula 3.1, we can use the fact that the right languages of
the states in R are unique. Then the equality δ(q, a) = δ(p, a) for each a ∈ Σ (including the case
δ(q, a) undefined, which is treated as a special value δ(q, a) = ⊥) is equivalent to p ≡ q provided
p and q are both final or both non-final.

Operations on the set R (called the register) are implemented using a hash table. On average,
they are executed in constant time. The finality of a state, labels and destinations of transitions
are the key in the table — they are used for computing the hash function. So both the register
search, and adding a state to the register, run in constant time. The whole minimization algorithm
runs in linear — O(|Q|) — time.

Incremental Construction of Minimal Dictionaries

Recall that our aim is not to minimize the trie once it is constructed, but rather to minimize
it during its construction. Once a subtree has been minimized, it cannot be changed without
additional effort and complication of the minimization algorithm. The key to success is detection
of those subtrees that will no longer change.

Let us first assume that the lexicon being minimized is ordered lexicographically. Recall that a
string w = w1 . . . wn is lexicographically smaller than a string w′ = w′1 . . . w′m (written w <lex w′)
if and only if w is a prefix of w′ or wt < w′t for the first character t after the longest common
prefix of w and w′ (i.e. w1 . . . wt−1 = w′1 . . . w′t−1).

3

Now suppose a word w from the sorted dictionary has just been added to a trie. What states
can change their right language when the next word w′ is added? The answer is “all states along
the path that recognizes w”. Word w′ must either follow the whole path of w, and then extend it
with a suffix, or follow a part of it, and then create a new subtree starting with an extra transition
added to some state on the path of w. Note that w′ cannot follow any existing transition that
does not belong to the path of w. Because the words are ordered lexicographically, so are labels on
subsequent transitions of a state. If ∀1≤j≤i wj = w′j , wi+1 6= w′j+1, then wi+1 < w′i+1. As wi+1 is
lexicographically the last label on a transition, a new transition has to be created for w′i+1. When
we add w′, the states δ(q0, w1...k), i + 1 ≤ k ≤ |w| can undergo local minimization.

With all necessary ingredients already prepared, it is easy to formulate the incremental con-
struction algorithm.

3As the name suggests, the lexicographic order is the order in which words are typically arranged in dictionaries,
a preceding aardvark, but aardvark coming before and. The ordering of characters may reflect their encoding —
for example, their ASCII codes.

84 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

Algorithm 3.3.3: IncrementalConstruction(A = (Σ, Q, q0, F, δ), input)

w′ ← ε
while not Empty(input)

w ← NextWord(input)
q ← q0

i← 1
while i ≤ |w| ∧ δ(q, wi) ∈ Q comment: traverse the common prefix

q ← δ(q, wi)
i← i + 1

LocalMin(A, q, w′i+1...|w|)
q ← AddBranch(q, wi . . . w|w|) comment: append the remainder of w.

F ← F ∪ {q}
w′ ← w

LocalMin(A, q0, w
′)

procedure LocalMin(A, q, w)
if |w| > 0

r ← δ(A, q, w1)
LocalMin(A, r, w2...|w|)
if ∃p∈R p ≡ r

Q← Q \ {r}
δ(q, w1)← p

else R← R ∪ {r}
The algorithm runs in time proportional to the size of the input data measured in characters.

Each input word w can be divided into two parts: a prefix w1...i and a suffix wi+1...|w|. Either
part can be empty. The first i characters of w are processed in the inner while loop — the loop
runs i times, its body being executed in constant time. The remaining |w| − i characters are first
processed in the call to the procedure AddBranch() (see algorithm 3.2.3 on page 72). The suffix
appended by AddBranch() is processed again in calls to LocalMin(). There may be as many
as |w| − i calls, but each state recognizing the suffix is processed only once.

Let us see how the algorithm works in practice. Suppose our dictionary comprizes the words
cat, chat, swat, and sweat. We start with an automaton that contains only the initial non-final
state q0. We add cat. The inner loop is skipped as q0 has no outgoing transitions. A call to
LocalMin() does nothing, as there is no previous word, and w′ = ε. AddBranch() creates the
chain of states q1, q2, q3 and makes q3 final. Then chat is added. In the inner while loop, the prefix
c is traversed, and the current state becomes q1. Procedure LocalMin() is called recursively as
LocalMin(A, q1, at), LocalMin(A, q2, t), and LocalMin(A, q3, ε). The last call immediately
returns to the second one. Since R is empty, no state equivalent to q3 can be found, and q3 is
added to R. Back in the first call, no equivalent to q2 can be found in R, so q2 is also added to R.
AddBranch() creates the chain of states q4, q5, and q6 and makes q6 final (figure 3.17).

q0

q1 q2 q3

q4 q5 q6

c

a t

h

a t

Figure 3.17: Incremental construction: automaton recognizing words cat and chat.

It is time to add swat. The inner loop is not entered as δ(q0, s) 6∈ Q. LocalMin() is

3.3. DICTIONARIES 85

called recursively as LocalMin()(A, q0, chat), LocalMin()(A, q1, hat), LocalMin()(A, q4, at),
LocalMin()(A, q5, t), and LocalMin()(A, q6, ε). The last call returns immediately. In the penul-
timate call, q6 is found to be equivalent to q3 ∈ R. So q6 is deleted, and δ(q5, t) is redirected to q3.
Back in the preceding call, q5 is found equivalent to q2, gets deleted, and δ(q4, a) is redirected to q2.
Back one level, q4 is found to be unique, so it is added to R. So is q1 one level up. AddBranch()
creates states q7, q8, q9, and a final state q10, as well as transitions δ(q0, s) = q7, δ(q7, w) = q8,
δ(q8, a) = q9, and δ(q9, t) = q10. The result is shown in figure 3.18.

q0

q1 q2 q3

q4

q7 q8 q9 q10

c

a t

h a

s w a t

Figure 3.18: Incremental construction: automaton recognizing words cat, chat, and swat.

Now, we add sweat. The inner loop brings us to q8. LocalMin(A, q8, at), LocalMin(A, q9, t),
and LocalMin(A, q10, ε) are called. The last call returns immediately, and in the preceding one,
q10 is found equivalent to q3, so it gets deleted, and δ(q9, t) is redirected to q3. One level up, as q9

is found equivalent to q2, it gets deleted, and δ(q8, a) is redirected to q2. In AddBranch(), q11,
q12, as well as δ(q8, e) = q11, δ(q11, a) = q12, and δ(q12, t) = q13 are created. The result is shown
in figure 3.19.

q0

q1 q2 q3

q4

q7 q8 q11 q12

q13
c

a t

h a

s w e a

ta

Figure 3.19: Incremental construction: automaton recognizing words cat, chat, swat, and sweat.

Finally, there are no more words to be added. Recursive calls LocalMin(A, q0, sweat), Lo-
calMin(A, q7,weat), LocalMin(A, q8, eat), . . . , LocalMin(A, q13, ε) result in the minimal au-
tomaton. The last call returns immediately, the penultimate one deletes q13 and replaces it with
q3, redirecting δ(q12, t) to q3. The preceding call deletes q11, replaces it with q2, and redirects
δ(q11, a) to q2. Then q11 is deleted, and δ(q8, e) is redirected to q4. Finally, q8 and q7 are found to
have unique right languages, so they are added to R. The result is shown in figure 3.20.

86 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

q0

q1 q2 q3

q4

q7 q8

c

a t

h a

s w

a e

Figure 3.20: Incremental construction: the minimal automaton recognizing cat, chat, swat, and sweat.

Incremental Construction from Unordered Data

What happens when words come in arbitrary order? Since it is impossible to predict what the
next word could be, there is no part of the automaton that is safe from future modification. The
automaton has to be minimized entirely each time a new word has been added. Therefore, each
time a new word is added, it is added to a minimal automaton.

When a word is being added to the language of an automaton, the first part of the word —
the prefix — is already there. The remaining part must be used to create a path recognizing the
suffix. However, there is a complication. A minimal automaton may contain states that have more
than one incoming transition. They are called confluence states.

q0 q1 q2
f

o

i

Figure 3.21: Automaton recognizing the words if and of.

Figure 3.21 shows the minimal DFSA recognizing if and of. Suppose we want to add it. The
prefix i is already there. It leads to state q1, so we add a transition labeled t to q1 (figure 3.22).

q0 q1 q2

o

i

t

f

Figure 3.22: Automaton from figure 3.21 with näıvely added it. The FSA also recognizes ot.

Note that the above operation “overgenerates”: it inserts not only in, but also ot. The latter
is added because q1 is reached not only via δ(q0, i), but also via δ(q0, o) — it is a confluence state.

3.3. DICTIONARIES 87

Confluence states are the consequence of minimization. They represent several isomorphic
subtrees merged into one. As only one of those subtrees is to be modified, it should first be
extracted. Since only the path traversed during recognition of a prefix of the word to be added
is to be modified, only that path should be extracted. It is done by cloning states in that path,
starting from the first confluence state. Cloning means making an exact copy of a state, including
its finality and the suite of outgoing transitions. Once the extraction is done, a path recognizing
the suffix can be created. This procedure creates a new automaton that recognizes the language
of the old automaton and the new word just added. However, the new automaton is not minimal.

Recall that the word is added to the minimal automaton. All states in the automaton are
already in the register R. All states in the path of the prefix of the word just added change their
right language. Theoretically, they all should be removed from R and reevaluated. Practically, this
is not always necessary. Recall that if the proper order of evaluation is used, checking equivalence
of two states involves only checking their finality and the set of outgoing transitions (including
destination states). They form the key of the hash table implementing the register R. If those
features do not change, there is no need to change the register.

The only state that needs to be removed from R is either the state preceding the first confluence
state, or — if no confluence states are in the path — the last state in the path of the prefix. All
states that follow it are not in R. In the second case, they are newly created states. In the first
case, newly created states are preceded by clones of existing states. The state that needs to be
removed from R changes its suite of outgoing transitions — either a new transition is added to it,
or an existing transition is redirected to a clone of its original destination, or the state becomes
final — when the word just added is a prefix of another word already in the language of the
automaton. When the state is reevaluated, it can be replaced with another state. In that case,
the suite of outgoing transitions of the preceding state changes, and that state must be removed
from R. Changes can percolate to the initial state.

Algorithm 3.3.4: UpdateAutomaton(A = (Σ, Q, q0, F, δ), w)

i← 0
q ← q0

while i ≤ |w| ∧ δ(q, wi) ∈ Q ∧ |{(p, a) : δ(p, a) = δ(q, wi)}| = 1 (1)
q ← δ(q, wi)
i← i + 1

u← i
R← R \ {q}
while i ≤ |w| ∧ δ(q, wi) ∈ Q (2)

p← clone(δ(q, wi))
Q← Q ∪ {p}
δ(q, wi)← p
q ← p
i← i + 1

q ← AddBranch(q, wi . . . w|w|)
F ← F ∪ {q}
while i ≥ u (3)

r ← δ(q0, w1...i−1)
if ∃p∈R p ≡ q

Q← Q \ {q}
δ(r, wi)← p
if i = u ∧ i > 0

u← u− 1
R← R \ {r}

else R← R ∪ {q}
i← i− 1
q ← r

88 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

The while loop (1) traverses the part of the prefix free of confluence states. The next two
lines remove a state from the register and record its location in variable u. The while loop (2)
executes only if confluence states are found in the path. It clones them. Note that when a state
is cloned, all targets of its transitions have incoming transitions from both the original and the
clone. They become confluence states. Once a confluence state in the prefix path is found and
cloned, all subsequent states in the path must also be cloned. The call to AddBranch() (cf.
algorithm 3.2.3) creates a chain of states and transitions that recognize the suffix of the word
being added. The last while loop (3) goes back from the end of the path recognizing the whole
word just added. States are evaluated and either replaced or put into R. If the state is replaced,
and it is the first state in the path not included in R, the previous state is removed from R and
its position is recorded in variable u. The process stops when there are no new replacements.

The algorithm runs in time proportional to the length of the word. The bodies of all while
loops can be executed in constant time. It is convenient to store states of the current path in a
vector, so that r ← δ(q0, w1...i−1) becomes just vector indexing performed in constant time. The
first two while loops execute |w| times altogether, while AddBranch() and the last loop are
executed in |w| steps. Thus, the algorithm has the same asymptotic complexity as the version for
sorted data. In practice, however, it runs more slowly, as certain states have to be reevaluated
over and over again.

q0 q1 q2 q3
a d

h

b

Figure 3.23: Incremental addition: the minimal automaton recognizing bad and had.

Let us take a look at an example. The automaton in figure 3.23 recognizes words bad and had.
We add bat. The first while loop in algorithm 3.3.4 is skipped because q1 is a confluence state. u
is set to 0, and q0 is removed from R. The first iteration of the second loop clones state q1. The
clone q4 has the same transitions as q1. Note that state q2 automatically becomes a confluence
state. The situation is shown in figure 3.24.

q0 q1 q2 q3

q4

h a d

b a

Figure 3.24: Incremental addition: in the minimal automaton from Figure 3.23, state q1 was cloned.

The second iteration of the while loop (2) clones state q2. The clone (q4) has a transition
labeled d leading to state q3. The call to AddBranch() creates a transition to a new state q6.
The state is made final. In the first iteration of the while loop (3), q6 is found equivalent to q3.

3.3. DICTIONARIES 89

Then q6 is deleted, and δ(q5, t) is redirected to q3. Subsequent iterations of the loop put q5, q4

and q0 into the register.

q0 q1 q2 q3

q4 q5

h a d

b

a

a

t

Figure 3.25: Incremental addition: the minimal automaton recognizing bad, bat, and had.

Now we add the word hat. The while loop (1) takes us to state q2. It is removed from R. u
is set to 3. The loop (2) has nothing to clone, while the next one creates a new state q7, and a
transition to it δ(q2, t) = q7. i is incremented to 4. The state is made final. In the first iteration
of the loop (3), it is found equivalent to q3, so it is deleted, and δ(q2, t) is redirected to q3. i is
set to 3. In the next iteration, q2 is found to be equivalent to q5. State q2 is deleted, and δ(q1, a)
is redirected to q5. Since u = i, and there was a replacement, u is decremented so that the next
iteration is possible. At the same time, q1 is removed from R. In that iteration, q1 is found to be
equivalent to q4, so q1 is deleted, and δ(q0, h) is redirected to q4. Again, u is decremented, and q0

is removed from the register. In the last iteration, q0 is put back to R. The minimal automaton
is shown in figure 3.26.

q0 q1 q2 q3
a

h

b t

d

Figure 3.26: Incremental addition: the minimal automaton recognizing bad, bat, had, and hat.

3.3.4 FSA as an Associative Container

The dictionaries presented so far in this book were simple word lists. They are of limited interest
to a linguist; it could be useful to associate some information with the words. One technique is
to encode it at the end of the words. Suppose part-of-speech tags are needed for each word. We
no longer put a pure word, like beautiful or beautifully into an automaton. Instead, we append a
separator (We use a plus sign here) and the tag to the end of the word, and put that string into the
FSA. As a result, beautiful becomes beautiful+Adj, and beautifully becomes beautifully+Adv.
This encoding can be viewed as a generalization of the final transitions introduced in section 3.1.2.

The language of the automaton is no longer a list of words. To find a word w, one forms w′

as a concatenation of w and the separator, and one checks whether δ(q0, w
′) is defined. If it is

indeed so, then the word is in the dictionary. In addition,
−→
L δ(q0, w

′) is the set of tags associated
with the word.

90 CHAPTER 3. APPLICATIONS OF FINITE-STATE AUTOMATA

This method of associating extra information with lexical entries is effective as long as the
information depends on their endings, as part-of-speech tags do. For example, English words
ending in -ing are mostly gerunds (+Ger). A minimization algorithm will be able to factor out
the common suffix ing+Ger into a single substructure in the lexicon, thus avoiding the multiple
representation of the suffix for the different -ing verb forms.

More encoding methods for dictionaries are discussed in the literature. One common op-
tion is to use finite-state transducers, i.e. finite-state machines that can produce output strings
(Karttunen 1994). The incremental construction of minimal transducers is discussed by Mihov
and Maurel (2001) and Skut (2004).

Another technique of associating information with words is the minimal perfect hashing, which
maps each word in a dictionary to a unique integer value called a hash code (Revuz 1991, Lucchiesi
and Kowaltowski 1993).

3.4 Further Reading

There exists a rich literature on pattern matching with finite-state automata. Crochemore and
Rytter (1994) provide a very good introduction this topic. A more in-depth treatment of the
subject can be found in the books by Charras and Lecroq (2004) and Crochemore and Hancart
(1997).

The use of tries and minimal automata as dictionaries was introduced by Liang (1983). Asso-
ciating additional information with words in an automaton is discussed by Revuz (1991), as well
as by Lucchiesi and Kowaltowski (1993) and Kowaltowski, Lucchesi and Stolfi (1998). Another
method of providing that functionality is to use finite-state transducers, i.e. finite-state machines
that can produce output strings (Karttunen 1994). Another technique of associating any infor-
mation with words is minimal perfect hashing (Revuz 1991, Lucchiesi and Kowaltowski 1993).
In general, the proceedings of a series of workshops Finite State Methods in Natural Language
Processing held since 1998 can provide the readers with valuable material on many aspects of the
use of finite-state devices in natural language processing.

Further NLP applications of finite-state machines range from text indexing (Silberztein 1999b)
and spelling correction (Oflazer 1996) to morphology modeling (Koskenniemi 1983, Karttunen
and Beesley 2003) and parsing (Abney 1991, Karlsson, Voutilainen, Heikkila and Anttila 1995,
Grefenstette 1996, Roche 1997).

Chapter 4

Implementing Automata

This chapter discusses issues related to the implementation of finite-state automata, and tools for
manipulating them. Section 4.1 introduces standard data structures for representing automata
and outlines various compression and speed-up techniques. Subsequently, in section 4.2, we briefly
introduce a number of software toolkits, which are freely available for research purposes, for
building, combining and optimizing finite-state devices.

4.1 Data Structures for Representing Automata

One of the major issues in the implemention of finite-state devices is their computational repre-
sentation. Since an FSA can be seen as a labeled directed graph, we can deploy standard data
structures used to represent graphs, i.e. adjacency matrices and adjacency lists, with some slight
enhancements. Selecting an appropriate storage model for an FSA in a given scenario requires
consideration of the following questions:

• Is the FSA deterministic or non-deterministic?

• Is it static (it will be employed in read-only mode) or dynamic?

• What are the major operations which will be carried out on the automaton?

For example, consider a named entity extractor that locates occurrences of named entity pat-
terns in texts. The patterns are formulated using regular expressions and compiled into a device
according to the algorithm described in section 3.2. The extractor is constructed and applied in
three steps. First, each of the the regular expressions is compiled into an NFSA. In the second
step, the NFSAs are combined into a single automaton, which is determinized and minimized.
Finally, the resulting DFSA is used to locate named entities in a text.

The types of operations performed at the three stages differ. The NFSAs constructed in steps
one and two must support efficient dynamic insertion and deletion of transitions (for algorithms
such as ε-removal, determinization and minimization). Fast iteration over sets of states and/or
transitions is also desirable. On the other hand, the resulting DFSA is static: once constructed, it
is never changed. The only operation required now is its fast application to strings, which entails
efficient computation of the transition δ(q, s) for a given state q and symbol s.

As it happens, there is no data structure that would be optimal for both kinds of operations.
In effect, different data structures are often used at different processing stages. In the remainder of
this chapter, we investigate a number of data structures from the efficiency perspective. In order
to simplify description, we focus on DFSAs, but most of the data structures can be extended to
NFSAs in a trivial way.

91

92 CHAPTER 4. IMPLEMENTING AUTOMATA

4.1.1 Transition Matrix

The simplest way to represent a DFSA A = (Σ, Q, q0, F, δ) is to use a |Q| × |Σ| matrix whose
ij-th element contains the value of δ(qi, aj), where aj is the j-th symbol in the alphabet Σ (we
can easily define a mapping from alphabet symbols to integers). If the transition function is not
defined for a given state-symbol combination then the corresponding matrix element contains a
null value. The presented data structure is known as the adjacency matrix. For the sake of clarity
in the context of automata we call such a matrix a transition matrix. An extension to NFSAs is
straightforward, i.e., the ij-th element of the transition matrix contains a list of all target states of
outgoing transitions from state qi labeled with aj . Figure 4.1 gives an example of a simple DFSA
with the corresponding transition matrix depicted in table 4.1. For marking states as initial,
accepting or rejecting, we can deploy a simple boolean-valued vector.

q0 q1 q2 q3 q4 q5

q6 q7 q8

s t a r t

c

a r

d

a

Figure 4.1: An DFSA accepting the language {start, card, art}.

Q/Σ a c d r s t
q0 3 6 1
q1 2
q2 3
q3 4
q4 5
q5

q6 7
q7 8
q8 5

Table 4.1: A transition matrix for the DFSA in figure 4.1.

What makes a transition matrix representation highly attractive is the quick access to the infor-
mation on δ(q, a), which costs O(1) time, and the facility to efficiently add and delete transitions,
which can be similarilly done in constant time.

Unfortunately, the matrix representation has two major drawbacks. Firstly, the complexity of
iterating over all transitions from a given state is proportional to the size of the alphabet since
we must inspect every single element in the row corresponding to the current source state. Note
that this is not a worst-case estimate (as the O(2n) complexity of determinization) — iteration
always takes |Σ| steps for each state, which is formally abbreviated as Θ(|Σ|) (see framed box on
page 38).

The other major drawback of the matrix representation is its high space requirement, amount-
ing to Θ(|Q| · |Σ|). As we can see in the example in table 4.1 only a minor part of the transition
table is filled with non-null values, i.e. the average number of outgoing transitions from a given
state is relatively low. We call such automata sparse, whereas automata with a high average

4.1. DATA STRUCTURES FOR REPRESENTING AUTOMATA 93

number of outgoing transitions from a given state are called dense. Formally, the density of an
DFSA A = (Σ, Q, q0, F, δ) is defined as follows:

density(A) =
|δ|

|Q| × |Σ|
(4.1)

The density of the automaton in figure 4.1 is 10/48 ≈ 20.83%.
Obviously, the density of automata depends on the process or phenomenon we are modeling.

In most NLP applications, however, we deal with very sparse automata. For example, the density
of DFSAs implementing large morphological lexica oscillates around 1− 2%.

Therefore, the matrix representation is used relatively rarely, most typically for dense and
small automata, especially when there is a need to frequently modify transitions in constant time.

4.1.2 Transition Lists

An alternative way of representing an automaton is to use adjacency lists. For each state q in
the automaton we define a list of all pairs (a, p) such that δ(q, a) = p. In the world of finite-
state devices we will call adjacency lists transition lists. This data structure is suitable for both
static and dynamic automata, and for both deterministic and nondeterministic variants as well.
Figure 4.2 shows an example of transition-list representation of the automaton in figure 4.1.

8

7

6

5

4

3

2

1

0

(d,5)

(r,8)

(a,7)

(t,5)

(r,4)

(a,3)

(t,2)

(a,3) (c,6) (s,1)

Figure 4.2: Transition-list representation of the automaton in figure 4.1.

The main advantage of using this data structure is its low space complexity. Its memory
requirements are proportional to the size of the automaton and amount to Θ(|Q| + |δ|). Having
this nice feature is penalized by slower access to δ(q, a). In the worst case we have to traverse
the whole list for a given state in order to locate a transition labeled with a given symbol. As
a result, the overall complexity of this operation is O(|Σ|) in the case of DFSAs and O(|Q| · |Σ|)
for NFSAs. As discussed earlier, a majority of finite-state based NLP applications usually deploy
sparse automata, which means that the runtime performance of the δ(q, a)-look-up operation does
not constitute a critical factor. Nevertheless, in the case of denser automata we could keep the
pairs in the transition lists sorted by input symbol, which could reduce the time for accessing
single transitions to O(log|Σ|) via application of binary search (see frame on page 80, and note
that in such a case lists have to be implemented as vectors in order to meet the random-access
requirement).

Consequently, adding a new transition to the automaton would involve inserting it into the
appropriate transition list at the right position. This could be done in O(|Σ|) steps since in the
worst case the whole list (represented as a vector) has to be reallocated. Fortunately, if addition

94 CHAPTER 4. IMPLEMENTING AUTOMATA

and deletion operations are highly relevant, we could find a better solution. For instance, instead
of lists we could utilize balanced trees or even more fancy and efficient data structures for storing
transitions, which allow for accessing, deleting and inserting elements in sorted sets of size n in
O(logn) time. It means that operations involving modification of transitions could be performed
in O(log|Σ|) time. Further details on efficient data structures implementing dynamic sets can be
found in Cormen et al. (2001).

Finally, transition-list representation allows for iterating over all transitions from a given state
q in Θ(|outdegree(q)|), where outdegree(q) denotes the number of outgoing transitions from state
q. In comparison to matrix represention there is still one more tiny advantage, namely: introducing
new transitions labeled with symbols not covered by the current alphabet is somewhat easier than
in the case of a transition matrix since an introduction of a new symbol to the alphabet in the
latter case would result in expensive reorganization of the underlying data structure.

4.1.3 Compressed Transition Matrix

The representations introduced in the two previous sections have the advantage of either compact
memory representation (transition lists) or fast transition access (transition matrix). However,
they always sacrifice the other desirable property, which results in slower transition access for
transition lists and high memory requirements for transition tables. Fortunately, there are data
structures that combine both advantages.

Sparse transition matrices can be compressed in such a manner that the space requirement
is nearly linear in the number of transitions, without sacrifying the constant time for accessing
δ(q, a). The idea is to shift and overlap the rows of the transition matrix so that no two non-zero
entries end up in the same position, and to store them in a one-dimensional array. This can be done
in a greedy manner by successively placing the consecutive rows of the transition matrix into the
array DELTA in such a way that collisions are avoided, i.e. a single element in the array DELTA
may refer to at most one element in some row of the transition matrix. Additionally, we introduce
an array ROW[1...|Q|] for storing for each state a pointer to the beginning of the corresponding
transition row stored in DELTA. Figure 4.3 gives an example of shifting and overlapping the rows
of the transition matrix presented in table 4.1. As we can see the rows 0,1,2,3 and 5 can share the
same space in DELTA without performing any shifting operations, whereas other rows have to be
displaced in order to avoid clashes.

For accessing the value of δ(q, a), we simply need to check the element in DELTA at position
ROW[q]+INDEX[a], where INDEX maps each alphabet symbol to a unique integer. One question
remains: namely, how can we guarantee that a non-empty value in DELTA at a given index
encodes the target state of some outgoing transition from state q. In order to assure this, we
still need another one-dimensional array OWNER of the same length as DELTA and assigns each
element in DELTA an associated state, i.e. OWNER[i]=q means that the information stored in
DELTA[i] refers to a transition for state q. If δ(q, a) is undefined and the corresponding element
in DELTA is not utilized, we can assign the latter a separate value which stands for “undefined
and unused” (denoted by a dash in our example). The pseudocode of the operation for accessing
δ is given below.

Algorithm 4.1.1: GetDelta(q, a)

if OWNER[ROW[q] + INDEX[a]] = q
return (DELTA[ROW[q] + INDEX[a]])

else
return (nil)

Let us now briefly discuss the issue of packing a transition table into a one-dimensional array.
The example given above represents just a single row displacement. Ideally, we would be interested
in finding a set of row displacements that minimizes the size of DELTA. Although this task is NP-
complete, there are many heuristics which yield nearly optimal compression rates, in particular

4.1. DATA STRUCTURES FOR REPRESENTING AUTOMATA 95

3 6 1
2

3
4

5

7
8

5

DELTA
3 6 3 4 1 2 5 7 8 5 - - -

OWNER
0 0 2 3 0 1 4 6 7 8 - - -

ROW
0
1
2
3
4
5
6
7
8

0,1,2,3,5

4

7

6,8

Figure 4.3: Compression of transition table presented in figure 4.1.

in the case of typical NLP applications. The simplest way is the so called ’first-fit’ strategy. In
the i-th step we try to shift the i-th row from left to right over the previously packed first i − 1
rows already stored in DELTA, until a zero-collision overlap has been identified. Since the initial
elements in DELTA will already be covered by the first couple of transition rows, a more efficient
way is to start computing a collision-free overlap from the first non-occupied position in DELTA.
Further improvements can be achieved by sorting all transition rows with respect to the number
of transitions they encode, which imposes the order of packing the rows, i.e. rows containing more
elements are packed before we proceed with packing sparse rows. Alternatively, we could partition
the set of transition rows into dense and sparse based on some threshold, and subsequently pack
dense rows in the aforementioned manner, then precompute free positions in DELTA and finally
displace the sparse rows via utilization of precomputed free positions for speeding up the whole
process.

The application of the above techniques may result in a fair compression rate. But for all
that, compressed matrices are not suitable for representing dynamic automata since adding new
transitions would lead to time-intensive recomputations. Therefore their usability is limited to
static finite-state devices.

Table 4.2 summarizes the main features of the presented storage models for deterministic
automata in terms of space and time complexity of relevant operations.

Data Structure space accessing δ(q, a) iteration modification
transition matrix Θ(|Q| · |Σ|) O(1) O(|Σ|) O(1)
transition lists Θ(|Q|+ |δ|) O(outdeg(q)) Θ(outdeg(q)) O(outdeg(q))
sorted transition lists O(|Q|+ |δ|) O(log(outdeg(q))) Θ(outdeg(q)) O(outdeg(q))
compressed trans.
matrix

Ω(|Q|+ |δ|)
O(|Q| · |Σ|)

O(1) Θ(|Σ|) -

Table 4.2: Comparison of different data strctures for representing FSAs.

96 CHAPTER 4. IMPLEMENTING AUTOMATA

Please note that for NFSAs all the values in the table are identical except the space complexity
of the transition matrix. In this case the space complexity is Θ(|Q| · |Σ|+ |δ|) since the elements of
the transition table are lists of total length |δ|. Analogously, the space complexity of a compressed
transition table is O(|Q| · |Σ|+ |δ|) (Ω(|Q|+ |δ|)). Finally, bear in mind again that replacing lists
with balanced trees (or other efficient data structures for implementing dynamic ordered sets)
for keeping the transition sorted would yield an O(log(outdeg(q))) complexity of the modification
operation in the third row in the table 4.2.

4.2 Finite-State Toolkits

This book provides the reader with sufficient knowledge to build his or her own finite-state toolkit.
However, the implementation of such a library is a time-consuming task, and a number of broadly-
used and well-debugged toolkits are freely available for research purposes.

Two such toolkits are already mentioned in the introduction. Xerox finite-state tools (xfst,
twolc, lexc) were developed by some of the best-known researchers in the domain. The tools are
very sophisticated, efficient, and with a sound theoretical background. They offer a complete
system. More information can be found in a book by Karttunen and Beesley (2003), and on the
website http://www.xrce.xerox.com/competencies/content-analysis/fst/home.en.html.

The second toolkit mentioned in the introduction is INTEX, which is described in Silberztein
(1999a). It is the result of decades of research by French scientists. While Xerox puts more
stress on various finite-state operators, INTEX has a more sophisticated user interface, and also
features push-down automata. More information on INTEX can be found at http://msh.univ-
fcomte.fr/intex/. Unfortunately, recent versions of INTEX run only on Windows. UNITEX is
a very similar system, based on the same concepts; it works in Unicode, and is written in Java,
so it can be used on a variety of platforms. More information about UNITEX can be found at
http://www-igm.univ-mlv.fr/˜unitex/.

The AT&T FSM library is a collection of about 30 programs that manipulate automata and
transducers with special focus on weighted finite-state machines. They also offer some of the
best visualization tools for graphs (the graphical representation for finite-state machines). More
information about the library can be found at http://www.research.att.com/sw/tools/fsm/ or in
the article Mohri, Pereira and Riley (1998).

Gertjan van Noord’s fsa program is written in Prolog. This makes it slow for large-scale NLP
systems, but at the same time highly flexible. It is a program of choice for theoretical research.
More information can be found at http://odur.let.rug.nl/˜vannoord/Fsa/fsa.html. It is possible
to translate operators from the AT&T toolkit and from Xerox tools to the form used by fsa – de-
tails can be found at http://cs.haifa.ac.il/˜shuly/teaching/03/lab/fst.html or http://www.sfs.uni-
tuebingen.de/˜nvail/ss04/synopsis-of-software-tools.html.

Many other toolkits are available. There is a large variety of software, some of it written by
the authors of this book. Sheng Yu maintains a list of pointers to finite-state software packages
at http://www.csd.uwo.ca/research/grail/links.html. A more linguistically oriented database can
be found at http://tangra.si.umich.edu/clair/universe-rk/html/u/db/acl/.

4.3 Further Reading

Modeling compact and efficient data structures for representing automata is a well-studied area.
To take a deeper insight into general compression techniques of automata we recommend the
articles Kiraz (1999), Daciuk (2000) and Beijer, Watson and Kourie (2003) for further reading.
Tarjan and Yao (1979) gives an extensive overview of state-of-the-art methods for storing sparse
tables which can be utilized in the context of implementing automata. For those considering
implementing their own finite-state tools we recommend studying the articles Mohri et al. (1998)
and Kanthak and Ney (2004), which handle crucial implementational issues in more detail.

http://www.xrce.xerox.com/competencies/content-analysis/fst/home.en.html
http://msh.univ-fcomte.fr/intex/
http://msh.univ-fcomte.fr/intex/
http://www-igm.univ-mlv.fr/~{}unitex/
http://www.research.att.com/sw/tools/fsm/
http://odur.let.rug.nl/~{}vannoord/Fsa/fsa.html
http://cs.haifa.ac.il/~{}shuly/teaching/03/lab/fst.html
http://www.sfs.uni-tuebingen.de/~{}nvail/ss04/synopsis-of-software-tools.html
http://www.sfs.uni-tuebingen.de/~{}nvail/ss04/synopsis-of-software-tools.html
http://www.csd.uwo.ca/research/grail/links.html
http://tangra.si.umich.edu/clair/universe-rk/html/u/db/acl/

Bibliography

Abney, S.(1991), Parsing by chunks, in R. Berwick, S. Abney and C. Tenny (eds), Principle-Based Parsing,
Kluwer Academic Press, Dordrecht.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D.(1974), The Design and Analysis of Computer Algorithms,
Addison-Wesley Publishing Company.

Aho, A. V., Sethi, R. and Ullman, J. D.(1988), Compilers. Principles, Techniques, and Tools, Addison-
Wesley.

Beijer, N. D., Watson, B. W. and Kourie, D. G.(2003), Stretching and jamming of automata, SAICSIT
2003: Proceedings of the 2003 annual research conference of the South African institute of computer
scientists and information technologists on Enablement through technology, South African Institute
for Computer Scientists and Information Technologists, , Republic of South Africa, pp. 198–207.

Charras, C. and Lecroq, T.(2004), Handbook of Exact String Matching Algorithms, King’s College London
Publications.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.(2001), Introduction to Algorithms, Second
Edition, MIT Press.

Crochemore, M. and Hancart, C.(1997), Automata for matching patterns, in G. Rozenberg and A. Salomaa
(eds), Handbook of Formal Languages, Vol. 2, Springer-Verlag, pp. 399–462.

Crochemore, M. and Rytter, W.(1994), Text Algorithms, Oxford University Press, New York.

Daciuk, J.(2000), Experiments with automata compression., Proceedings of CIAA - Implementation and
Application of Automata, London, Ontario, Canada, pp. 105–112.

Glushkov, V. M.(1961), The abstract theory of automata, Russian Mathematical Surveys 16, 1–53.

Grefenstette, G.(1996), Light parsing as finite-state filtering, EACI 1996 Workshop Extended Finite-State
Models of Language, Budapest.

Hopcroft, J. E., Motwani, R. and Ullman, J. D.(2001), Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley.

Kanthak, S. and Ney, H.(2004), Fsa: An efficient and flexible c++ toolkit for finite state automata
using on-demand computation, In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL 2004), Barcelona, Spain, pp. 510–517.

Karlsson, F., Voutilainen, A., Heikkila, J. and Anttila, A.(1995), Constraint Grammar, A Language-
independent System for Parsing Unrestricted Text, Mouton de Gruyter.

Karttunen, L.(1994), Constructing lexical transducers, COLING-94, Kyoto, Japan.

Karttunen, L. and Beesley, K.(2003), Finite-State Morphology, Chicago University Press.

Kiraz, G. A.(1999), Compressed storage of sparse finite-state transducers, Proceedings of WIA 1999,
Potsdam, Germany, pp. 109–121.

Koskenniemi, K.(1983), Two-level model for morphological analysis, IJCAI-83, Karlsruhe, Germany,
pp. 683–685.

Kowaltowski, T., Lucchesi, C. L. and Stolfi, J.(1998), Finite automata and efficient lexicon implementation,
Technical Report IC-98-02.

Leslie, T.(1995), Efficient approaches to subset construction, Master’s thesis, Computer Science, University
of Waterloo.

Liang, F. M.(1983), Word Hy-phen-a-tion by Comp-uter, PhD thesis, Stanford University.

97

98 BIBLIOGRAPHY

Lucchiesi, C. and Kowaltowski, T.(1993), Applications of finite automata representing large vocabularies,
Software Practice and Experience 23(1), 15–30.

McNaughton, R. and Yamada, H.(1960), Regular expressions and state graphs for automata, IEEE Trans-
actions on Electronic Computers 9, 39–47.

Mihov, S. and Maurel, D.(2001), Direct construction of minimal acyclic subsequential transducers, in
S. Yu (ed.), Implementation and Application of Automata, Vol. 2088 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 217–229.

Mohri, M.(1997), Finite-state transducers in language and speech processing, Computational Linguistics
23(2), 269–311.

Mohri, M., Pereira, F. C. N. and Riley, M.(1998), A rational design for a weighted finite-state trans-
ducer library, WIA ’97: Revised Papers from the Second International Workshop on Implementing
Automata, Springer-Verlag, London, UK, pp. 144–158.

Oflazer, K.(1996), Error-tolerant finite state recognition with applications to morphological analysis and
spelling correction, Computational Linguistics 22(1), 73–89.

Revuz, D.(1991), Dictionnaires et lexiques, méthodes et algorithmes, PhD thesis, Université Paris 7.

Roche, E.(1997), Parsing with finite-state transducers, in E. Roche and Y. Schabes (eds), Finite-State
Language Processing, MIT Press, Cambridge, pp. 241–281.

Roche, E. and Schabes, Y. (eds)(1997), Finite-State Language Processing, Bradford Book, MIT Press,
Cambridge, Massachusetts, USA.

Silberztein, M.(1999a), INTEX tutorial notes, in D. Wood and D. Maurel (eds), Workshop on Implement-
ing Automata WIA99 – Pre-Proceedings, Springer-Verlag, Potsdam, Germany, pp. XIX–1 – XIX–31.

Silberztein, M.(1999b), Text indexation with intex, Computers and the Humanities 33(3), 265–280.

Skut, W.(2004), Incremental construction of minimal acyclic sequential transducers from unsorted data,
Proceedings of COLING 2004, Geneva, Switzerland.

Tarjan, R. E. and Yao, A. C.-C.(1979), Storing a sparse table, Commun. ACM 22(11), 606–611.

Index

O-notation, 10
Ω-notation, 38
Θ-notation, 38
ε-elimination, 25
ε-NFSA, 21

accepting a string, 22
consuming a string, 22

ε-closure, 21–23
of a set of states, 21
of a state, 21

ε-elimination, 22
ε-transition, 20–23
Compute-ε-Closures(), 22
Determinize(), 18
LongestMatch(), 63–65, 67
Refine(), 41
Remove-ε(), 26
Tokenize(), 63
TrieInsert(), 72
LongestMatch(), 63

accepting a string, 7, 9
acyclic, 82
adjacency list, 91, 93
adjacency matrix, 91
Aho, Sethi and Ullman’s algorithm, 38, 42, 48
Aho-Corasick search, 70
alphabet, 5, 7, 11
arc, 6, 11, 20
ASCII, 83
asymptotic lower bound, 38
asymptotic tight bound, 38
automaton

complete, 8
dense, 93
incomplete, 8
sparse, 92

backtracking, 13, 64, 65
binary search, 93
Brzozowski’s algorithm, 47, 48

character, 5
ASCII, 5, 6

cloning, 87
closure properties

of regular languages, 56
complete

automaton, 8

concatenation
of strings, 5

confluence states, 86
consuming a string, 9
currency amount, 65

De Morgan’s law, 58
dead-end, 13
density of an automaton, 93
dequeue, 18
determinism, 9
determinization, 70, 71

of an NFSA, 15
pseudocode, 18

DFSA, 7, 11, 13, 15
dictionary, 90

e-mail, 69
e-mail address, 6
emoticon, 64
empty string, 5
equivalence

of FSAs, 27
equivalent DFSA, 15
exponential complexity, 10

final transition, 66, 67, 70
final transitions, 68, 69
finite-state automaton, 7

deterministic, 7
non-deterministic, 11

finite-state transducer, 90
formal machine, 9
FSA, 7
function

partial, 7
total, 8

function growth, 10

graph, 91

hash table, 83
Hopcroft and Ullman’s algorithm, 35, 48
Hopcroft’s algorithm, 42, 82

incomplete
automaton, 8

incremental construction
of a minimal acyclic DFSA, 83

99

100 INDEX

initial
lower-case, 68

key
of a state in a trie, 71

language, 5
empty, 5
finite, 5
infinite, 5
of a formal machine, 9
of an FSA, 9
regular, 50, 55, 56

lexicographic order, 83
linear complexity, 10
log-linear complexity, 10
logarithmic complexity, 10
longest match, 61, 63–65
loop, 6

machine
formal, 9

membership checking
with backtracking, 13

minimization, 30, 82
Myhill-Nerode theorem, 31

NFSA, 11–13, 15
ε-free, 22, 24

order
lexicographic, 83

path, 12
pattern match, 69
pattern matching, 90
polynomial complexity, 10
postorder traversal, 82
powerset, 14
powerset construction, 15
prefix, 6, 63, 65, 66, 69–71, 73, 74, 76, 77

quadratic complexity, 10
queue, 18

register, 83
regular expression, 65, 69
regular language, 50, 55, 56
regular languages

closure properties, 56
regular union, 65
rejecting a string, 7
reversal, 70
right language, 82

of a state, 30

sentinel character, 66, 67
smiley face, 64
speech synthesizer, 6
spell checker, 6

state, 6
accepting, 7, 12
coaccessible, 35
final, 7, 12, 16
initial, 7, 11, 12, 15
non-final, 7
rejecting, 7

state machine, 7
deterministic, 7

stateset, 7, 15
in subset construction, 16

string, 5, 9
classification, 6
empty, 5
length, 5
reversed, 6

string matching, 70
strongly connected component, 23
subset construction, 15, 70, 72

pseudocode, 18
running time, 19

suffix, 6, 69, 70, 73–77

table filling algorithm, 35, 38, 48
telephone number, 19
text search, 69
token, 61–63, 65, 67, 68
token class, 62–65, 67–69
tokenization, 61, 64, 65, 67, 69
tokenizer, 62, 63, 65
transition, 7

final, 66, 67, 70
input, 7
source state, 7
target state, 7

transition function, 7, 11, 70
as a relation, 12
extended, 9
extension to the domain 2Q × Σ∗, 14
in subset construction, 15
set-valued, 12

transition lists, 93
transition matrix, 92
transitions

final, 68, 69
trie, 70–72, 79, 90
trim, 36

FSA, 35
trimming

of an FSA, 35

URL, 6

word
capitalized, 65, 67
lower-case, 65, 67, 68
mixed-case, 65, 67, 68
upper-case, 65, 67

	Finite-State Automata
	Alphabets and Strings
	State Diagrams and State Machines
	Non-Deterministic Automata
	Determinization
	-Transitions
	-Elimination
	Subset Construction with -Transitions

	Equivalence of Automata
	Minimization
	A Dynamic Programming Solution
	Brzozowski's Algorithm
	Comparison of Minimization Algorithms

	Further Reading

	Regular Expressions
	Regular Expressions and Finite-State Automata
	Syntax of Regular Expressions
	Extensions

	Compilation of Regular Expressions into FSAs
	Atomic Regular Expressions
	Complex Regular Expressions

	Regular Languages
	Complement
	Intersection
	Difference
	Reversal

	Further Reading

	Applications of Finite-State Automata
	Tokenization
	Finer Token Classes
	Regexp-Based Tokenization

	Pattern Matching
	Finding Patterns in Time O(|w|)
	Failure Function

	Dictionaries
	Dictionary Tries
	Dictionary Automata
	Constructing Minimal Dictionaries
	FSA as an Associative Container

	Further Reading

	Implementing Automata
	Data Structures for Representing Automata
	Transition Matrix
	Transition Lists
	Compressed Transition Matrix

	Finite-State Toolkits
	Further Reading

